Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nepotism in ants: ant workers can regognize their kin

27.02.2003


Darwin in his time wondered about the existence of ants - how can natural selection as a process based on individual reproductive success give rise to sterile individuals such as ant workers? The solution comes from kin selection theory, which holds that an individual’s reproductive success can also be measured in the number of collateral kin produced. This is how the ants have solved the problem. In an ant colony with only one queen all the workers are her offspring and will in practice help to raise their siblings, which are genetically as valuable to them as own offspring.



However, colonies with multiple reproductively active queens occur commonly in ants. As a result workers will also be raising the more distantly related offspring, produced by queens other than their own mother. This dilutes the genetic returns from the help the workers provide. By selectively favouring offspring of the queen of closest kin, the workers can, however, partly mitigate this loss and more efficiently propagate their genes to the next generation. Because it is the workers who raise the brood they also have the opportunity to favour closer kin and disfavour (e.g. eliminate) more distant kin. Such nepotism har not been demonstrated before in ants.

Professor Liselotte Sundström and scientist Minttumaaria Hannonen from the University of Helsinki studied black ants and found out that kin does matter, and relatedness is a matter of discrimination. Their article is published in Nature, 27th of February, 2003.


In their study of the black ant (Formica fusca) the scientists show that worker ants are able to discriminate between closer and more distant kin, and also use this ability to raise offspring of higher genetic value. They constructed laboratory nests with two queens and took samples from a single offspring cohort both at the egg- and the adult stage. With the aid of genetic marker genes the scientists assessed both the reproductive shares each of the two queens obtained, and the relatedness between the workers and each of the two queens. If the workers are more closely related to one of the two queens, kin selection theory predicts that the reproductive share of this queen should increase during brood development. Conversely, if the workers are equally related to both queens no changes in brood composition are expected between the egg and the adult stage. The results show that this was the case - the closer the relatedness between the workers and one of the queens, the greater was the increase in her reproductive share during brood development.

The results thus show that worker ants can have very accurate kin discrimination abilities and that they also capitalize on this ability to pursue their selfish genetic interests. Nepotism has been difficult to demonstrate and has therefore remained a controversial issue. Most likely the tendency towards nepotism is a universal phenomenon, but the expression of this behaviour is likely to be modulated by costs due to recognition errors. When errors are made owing to informational constraints the costs will be paid by both the nepotistic individual and the entire colony. Under such circumstances natural selection will tend to eradicate nepotism from the population.

Minna Meriläinen | alfa
Further information:
http://www.helsinki.fi/english/news

More articles from Life Sciences:

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

nachricht Keeping the excitement under control
18.04.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>