Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nepotism in ants: ant workers can regognize their kin


Darwin in his time wondered about the existence of ants - how can natural selection as a process based on individual reproductive success give rise to sterile individuals such as ant workers? The solution comes from kin selection theory, which holds that an individual’s reproductive success can also be measured in the number of collateral kin produced. This is how the ants have solved the problem. In an ant colony with only one queen all the workers are her offspring and will in practice help to raise their siblings, which are genetically as valuable to them as own offspring.

However, colonies with multiple reproductively active queens occur commonly in ants. As a result workers will also be raising the more distantly related offspring, produced by queens other than their own mother. This dilutes the genetic returns from the help the workers provide. By selectively favouring offspring of the queen of closest kin, the workers can, however, partly mitigate this loss and more efficiently propagate their genes to the next generation. Because it is the workers who raise the brood they also have the opportunity to favour closer kin and disfavour (e.g. eliminate) more distant kin. Such nepotism har not been demonstrated before in ants.

Professor Liselotte Sundström and scientist Minttumaaria Hannonen from the University of Helsinki studied black ants and found out that kin does matter, and relatedness is a matter of discrimination. Their article is published in Nature, 27th of February, 2003.

In their study of the black ant (Formica fusca) the scientists show that worker ants are able to discriminate between closer and more distant kin, and also use this ability to raise offspring of higher genetic value. They constructed laboratory nests with two queens and took samples from a single offspring cohort both at the egg- and the adult stage. With the aid of genetic marker genes the scientists assessed both the reproductive shares each of the two queens obtained, and the relatedness between the workers and each of the two queens. If the workers are more closely related to one of the two queens, kin selection theory predicts that the reproductive share of this queen should increase during brood development. Conversely, if the workers are equally related to both queens no changes in brood composition are expected between the egg and the adult stage. The results show that this was the case - the closer the relatedness between the workers and one of the queens, the greater was the increase in her reproductive share during brood development.

The results thus show that worker ants can have very accurate kin discrimination abilities and that they also capitalize on this ability to pursue their selfish genetic interests. Nepotism has been difficult to demonstrate and has therefore remained a controversial issue. Most likely the tendency towards nepotism is a universal phenomenon, but the expression of this behaviour is likely to be modulated by costs due to recognition errors. When errors are made owing to informational constraints the costs will be paid by both the nepotistic individual and the entire colony. Under such circumstances natural selection will tend to eradicate nepotism from the population.

Minna Meriläinen | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>