Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nepotism in ants: ant workers can regognize their kin

27.02.2003


Darwin in his time wondered about the existence of ants - how can natural selection as a process based on individual reproductive success give rise to sterile individuals such as ant workers? The solution comes from kin selection theory, which holds that an individual’s reproductive success can also be measured in the number of collateral kin produced. This is how the ants have solved the problem. In an ant colony with only one queen all the workers are her offspring and will in practice help to raise their siblings, which are genetically as valuable to them as own offspring.



However, colonies with multiple reproductively active queens occur commonly in ants. As a result workers will also be raising the more distantly related offspring, produced by queens other than their own mother. This dilutes the genetic returns from the help the workers provide. By selectively favouring offspring of the queen of closest kin, the workers can, however, partly mitigate this loss and more efficiently propagate their genes to the next generation. Because it is the workers who raise the brood they also have the opportunity to favour closer kin and disfavour (e.g. eliminate) more distant kin. Such nepotism har not been demonstrated before in ants.

Professor Liselotte Sundström and scientist Minttumaaria Hannonen from the University of Helsinki studied black ants and found out that kin does matter, and relatedness is a matter of discrimination. Their article is published in Nature, 27th of February, 2003.


In their study of the black ant (Formica fusca) the scientists show that worker ants are able to discriminate between closer and more distant kin, and also use this ability to raise offspring of higher genetic value. They constructed laboratory nests with two queens and took samples from a single offspring cohort both at the egg- and the adult stage. With the aid of genetic marker genes the scientists assessed both the reproductive shares each of the two queens obtained, and the relatedness between the workers and each of the two queens. If the workers are more closely related to one of the two queens, kin selection theory predicts that the reproductive share of this queen should increase during brood development. Conversely, if the workers are equally related to both queens no changes in brood composition are expected between the egg and the adult stage. The results show that this was the case - the closer the relatedness between the workers and one of the queens, the greater was the increase in her reproductive share during brood development.

The results thus show that worker ants can have very accurate kin discrimination abilities and that they also capitalize on this ability to pursue their selfish genetic interests. Nepotism has been difficult to demonstrate and has therefore remained a controversial issue. Most likely the tendency towards nepotism is a universal phenomenon, but the expression of this behaviour is likely to be modulated by costs due to recognition errors. When errors are made owing to informational constraints the costs will be paid by both the nepotistic individual and the entire colony. Under such circumstances natural selection will tend to eradicate nepotism from the population.

Minna Meriläinen | alfa
Further information:
http://www.helsinki.fi/english/news

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>