Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal ions may play big role in how we sense smells

27.02.2003


Of the five basic senses, the sense of smell is the least understood. Now, scientists at the University of Illinois at Urbana-Champaign have sniffed out potential clues to how olfactory receptors in the nose detect odors. Those clues may also explain why dietary zinc deficiencies lead to a loss of smell.

Olfactory receptors are proteins that bridge through the cell membrane. Professor Kenneth S. Suslick and co-workers have found that the structure of the protein changes dramatically when a zinc or copper ion binds to it. They propose that the olfactory response to an odorant involves this change in structure that pushes and pulls part of the olfactory receptor protein into and out of the cell in a "shuttlecock" motion. This back-and-forth motion passes information through the cell membrane. The researchers will report their findings in the Proceedings of the National Academy of Sciences. A paper on the subject is to appear in the PNAS Online Early Edition the week of Feb. 24.

The average human nose can detect nearly 10,000 distinct scents, a feat that requires about 1,000 olfactory genes, or roughly 3 percent of the human genome.



"It seems surprising that such a large percentage of our genome is dedicated to the olfactory system," said Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "Being visually oriented and olfactorily impaired, we tend to overlook our sense of smell. But other mammals, like dogs and rats, live or die by their sense of smell."

Knowing that molecules that bind strongly to metal ions usually smell strongly (and often badly), Suslick and his colleagues -- chemistry professor Zaida A. Luthey-Schulten and doctoral student Jiangyun Wang -- investigated the possibility that olfactory receptors are metalloproteins (proteins that contain a metal ion as part of their structure).

Inorganic chemists have long suspected that the olfactory system involved metal ions. Only recently, however, have the genes responsible for smell been identified. "When we searched the genome data, we found an identical site in more than 75 percent of the olfactory receptors that looks like it can bind to metal ions very strongly," Suslick said.

The structure of these receptors is thought to be a protein that weaves in and out of the cell membrane seven times. Between the fourth and fifth helices, the scientists found an uncommonly long loop that they suspected contained the binding site for a metal ion.

To test their theory, the researchers created synthetic peptide analogs of the potential binding site in the receptor protein. As predicted, metal ions -- particularly zinc and copper -- were bound very strongly.

The researchers then used computer models to study the behavior of olfactory receptors upon odorant binding. "Computer simulations initially put this big loop outside the cell membrane because the loop is negatively charged," Suslick said. "When a positively charged metal ion binds to the site, however, the loopÕs charge is neutralized, so the computer places the loop in the membrane."

When the long loop containing the metal ion slides into the cell membrane, a portion of the receptor protein’s fourth helix is pushed outside the membrane, Suslick said. When an odorant binds to the metal ion, the loop is ejected from the membrane, and the fourth helix is dragged back in, triggering a sequence of events leading to nerve cell activity. Then, when the odorant leaves the metal ion, the process can start over.

This back and forth movement of the protein, which the researchers refer to as a shuttlecock motion, may be a new mechanism for passing information through cell membranes.

"Another piece to this puzzle is that one of the first symptoms of dietary zinc deficiency is loss of the sense of smell," Suslick said. "That, too, is keeping with this idea that the olfactory receptors are metalloproteins."

James E. Kloeppel | UIUC
Further information:
http://www.uiuc.edu/
http://www.news.uiuc.edu/scitips/03/0221olfactory.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>