Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hundreds of highly branched molecules unite in a giant self-assembled liquid crystal lattice

25.02.2003


A new liquid crystal lattice created by scientists at the University of Pennsylvania and University of Sheffield may be invisible to the naked eye, but it’s a giant in its own way.



Uniting hundreds of thousands of atoms, this supramolecular structure is one of the most complex ever made via self-assembly, where molecules organize themselves into larger structures. What’s more, it’s the first organic compound to assume an intricate structure previously seen only in metals such as uranium and various metal alloys.

The work is described in a paper published on the Web site of the journal Science.


"Understanding how self-assembly is controlled by molecular architecture will enable the design of increasingly complex nanostructures," said Virgil Percec, a professor of chemistry at Penn. "The achievement of a lattice of this size is a significant step towards designing new synthetic molecules which would form even larger structures, with dimensions approaching the wavelength of light."

Among self-assembled structures, bigger is better. Percec says if this lattice can attain dimensions equaling the wavelength of light the material could represent a new class of photonic crystals and a new approach to telecommunications. Such work could also yield molecular-scale electronics.

To create these large nanostructures, Percec and his colleagues started with a supersized building block: a carefully designed, well-defined and highly branched molecule referred to as a dendron. When thousands of these tree-like molecules come together, they organize themselves, unaided, into discrete microscopic spheres.

In the liquid crystal phase, each sphere consists of 12 tapered dendrons linked at their narrow end. Percec and his colleagues observed 30 of these globular structures arrange themselves into a tetragonal lattice whose repeat unit is a rectangular prism containing 255,240 atoms and measuring 169 by 169 by 88 angstroms. This repeat unit size is comparable to the crystal form of some spherical virus particles isolated from plants.

"Some of the complex structures in metal alloys have 200 atoms per lattice, and uranium has 30 atoms per unit," Percec said. "This encourages researchers to aim for equivalent self-assembled structures, and our work gives some pointers to synthetic chemists on how to design new dendrons for specific ’crystal’ structures."

Using increasingly sophisticated techniques, scientists engineer self-assembling molecules to arrange themselves into much larger, functioning objects. The field draws inspiration from nature, where proteins and cells are genetically encoded to arrange themselves into functional entities.

"We started our studies by trying to replicate the protein coat that surrounds a virus," Percec said. "We’ve designed these dendrons and other self-assembling molecules based on that model."

Self-assembly may prove useful in a wide range of fields, many involving encapsulation of materials: drug delivery, adhesives, pesticides, composites, coatings and paints, photographic and imaging media, catalysis, microfabrication and microelectronics. Percec’s group is now tweaking the structure of their dendron molecules so they might assemble into hollow spheres.


###
Percec is joined in the Science paper by co-authors Wook-Dong Cho at Penn and Goran Unger, Yongsong Liu and Xiangbing Zeng at the University of Sheffield. The research was funded by the UK Engineering and Physical Sciences Research Council and the National Science Foundation.


Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>