Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hundreds of highly branched molecules unite in a giant self-assembled liquid crystal lattice

25.02.2003


A new liquid crystal lattice created by scientists at the University of Pennsylvania and University of Sheffield may be invisible to the naked eye, but it’s a giant in its own way.



Uniting hundreds of thousands of atoms, this supramolecular structure is one of the most complex ever made via self-assembly, where molecules organize themselves into larger structures. What’s more, it’s the first organic compound to assume an intricate structure previously seen only in metals such as uranium and various metal alloys.

The work is described in a paper published on the Web site of the journal Science.


"Understanding how self-assembly is controlled by molecular architecture will enable the design of increasingly complex nanostructures," said Virgil Percec, a professor of chemistry at Penn. "The achievement of a lattice of this size is a significant step towards designing new synthetic molecules which would form even larger structures, with dimensions approaching the wavelength of light."

Among self-assembled structures, bigger is better. Percec says if this lattice can attain dimensions equaling the wavelength of light the material could represent a new class of photonic crystals and a new approach to telecommunications. Such work could also yield molecular-scale electronics.

To create these large nanostructures, Percec and his colleagues started with a supersized building block: a carefully designed, well-defined and highly branched molecule referred to as a dendron. When thousands of these tree-like molecules come together, they organize themselves, unaided, into discrete microscopic spheres.

In the liquid crystal phase, each sphere consists of 12 tapered dendrons linked at their narrow end. Percec and his colleagues observed 30 of these globular structures arrange themselves into a tetragonal lattice whose repeat unit is a rectangular prism containing 255,240 atoms and measuring 169 by 169 by 88 angstroms. This repeat unit size is comparable to the crystal form of some spherical virus particles isolated from plants.

"Some of the complex structures in metal alloys have 200 atoms per lattice, and uranium has 30 atoms per unit," Percec said. "This encourages researchers to aim for equivalent self-assembled structures, and our work gives some pointers to synthetic chemists on how to design new dendrons for specific ’crystal’ structures."

Using increasingly sophisticated techniques, scientists engineer self-assembling molecules to arrange themselves into much larger, functioning objects. The field draws inspiration from nature, where proteins and cells are genetically encoded to arrange themselves into functional entities.

"We started our studies by trying to replicate the protein coat that surrounds a virus," Percec said. "We’ve designed these dendrons and other self-assembling molecules based on that model."

Self-assembly may prove useful in a wide range of fields, many involving encapsulation of materials: drug delivery, adhesives, pesticides, composites, coatings and paints, photographic and imaging media, catalysis, microfabrication and microelectronics. Percec’s group is now tweaking the structure of their dendron molecules so they might assemble into hollow spheres.


###
Percec is joined in the Science paper by co-authors Wook-Dong Cho at Penn and Goran Unger, Yongsong Liu and Xiangbing Zeng at the University of Sheffield. The research was funded by the UK Engineering and Physical Sciences Research Council and the National Science Foundation.


Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>