Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU scientists locate, characterize key hormone involved in appetite control

21.02.2003


Increasing hormone causes increase of appetite, eating



Researchers at Oregon Health & Science University (OHSU) have identified a key hormone involved in appetite control and demonstrated its effect on the brain. Scientists have shown that the hormone, called ghrelin, activates specialized neurons in the hypothalamus involved in weight regulation. The research involved scientists at several collaborating institutions, including: Yale Medical School, Baylor College of Medicine, the University of Alberta and Lilly Research Laboratories. The results are printed in the Feb. 20 edition of the journal Neuron.

Researchers believe this information could be used to develop drugs aimed at stimulating appetite in patients who have undergone extreme weight loss due to illness, a condition known as cachexia. These pharmaceuticals could also assist children who are developing at a slower than normal rate. Conversely, drugs aimed at limiting production of the hormone might be developed to reduce appetite for those battling severe obesity.


"Ghrelin is a hormone produced in the stomach with the ability to stimulate feeding when introduced to specialized weight regulation brain cells called neuropeptide Y neurons. In fact, past research has shown that when ghrelin levels are increased in mice for an extended period, the mice gain weight," said Michael Cowley, Ph.D., an assistant scientist in the Division of Neuroscience at the OHSU Oregon National Primate Research Center and lead author of the study. "In both mice and humans, ghrelin levels increase naturally in response to weight loss or reduced caloric intake. As expected, the hormone diminishes in response to food intake. In other words, it’s believed to be part of the body’s natural signaling system which informs the brain when it’s time to eat."

To pinpoint and witness the effects of ghrelin in the brain, the scientists used a method pioneered by OHSU researchers Cowley, Roger Cone, Ph.D., and Malcolm Low, M.D., Ph.D. The researchers used a fluorescent protein to highlight certain neurons, making the brain cells distinguishable from other surrounding neurons. They then used tiny electrodes to record cell activity in response to ghrelin.

"It is remarkable how such a relatively small group of interconnected neurons deep in the brain coordinate the daily signals of hunger and satiety with the body’s long-term energy stores to normally maintain a constant body weight," said Low, a scientist in the Vollum Institute at OHSU.

The research team also located a new source for ghrelin production in the body. The site is located in a section of the hypothalamus that had no previously known function and that is near the brain region affected by the hormone.

"This research shows that there are two sites where increased appetite may be generated, the stomach and the brain," explained Cone, a senior scientist at the OHSU Vollum Institute. "We hope future research will hopefully distinguish between the roles of these two production sites so that we may better understand weight regulation and energy homeostasis in the body."

These latest findings follow a study published in August 2002 that identified and characterized peripheral hormone peptide YY (PYY). PYY appears to have the opposite effect as ghrelin – reducing appetite instead of increasing it. OHSU researchers and their collaborators found that by introducing PYY into the bloodstreams of both humans and mice, a temporary, but measurable drop in appetite and food ingestion occurred.


###
This research was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Center for Research Resources, both components of the National Institutes of Health.


Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>