Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU scientists locate, characterize key hormone involved in appetite control

21.02.2003


Increasing hormone causes increase of appetite, eating



Researchers at Oregon Health & Science University (OHSU) have identified a key hormone involved in appetite control and demonstrated its effect on the brain. Scientists have shown that the hormone, called ghrelin, activates specialized neurons in the hypothalamus involved in weight regulation. The research involved scientists at several collaborating institutions, including: Yale Medical School, Baylor College of Medicine, the University of Alberta and Lilly Research Laboratories. The results are printed in the Feb. 20 edition of the journal Neuron.

Researchers believe this information could be used to develop drugs aimed at stimulating appetite in patients who have undergone extreme weight loss due to illness, a condition known as cachexia. These pharmaceuticals could also assist children who are developing at a slower than normal rate. Conversely, drugs aimed at limiting production of the hormone might be developed to reduce appetite for those battling severe obesity.


"Ghrelin is a hormone produced in the stomach with the ability to stimulate feeding when introduced to specialized weight regulation brain cells called neuropeptide Y neurons. In fact, past research has shown that when ghrelin levels are increased in mice for an extended period, the mice gain weight," said Michael Cowley, Ph.D., an assistant scientist in the Division of Neuroscience at the OHSU Oregon National Primate Research Center and lead author of the study. "In both mice and humans, ghrelin levels increase naturally in response to weight loss or reduced caloric intake. As expected, the hormone diminishes in response to food intake. In other words, it’s believed to be part of the body’s natural signaling system which informs the brain when it’s time to eat."

To pinpoint and witness the effects of ghrelin in the brain, the scientists used a method pioneered by OHSU researchers Cowley, Roger Cone, Ph.D., and Malcolm Low, M.D., Ph.D. The researchers used a fluorescent protein to highlight certain neurons, making the brain cells distinguishable from other surrounding neurons. They then used tiny electrodes to record cell activity in response to ghrelin.

"It is remarkable how such a relatively small group of interconnected neurons deep in the brain coordinate the daily signals of hunger and satiety with the body’s long-term energy stores to normally maintain a constant body weight," said Low, a scientist in the Vollum Institute at OHSU.

The research team also located a new source for ghrelin production in the body. The site is located in a section of the hypothalamus that had no previously known function and that is near the brain region affected by the hormone.

"This research shows that there are two sites where increased appetite may be generated, the stomach and the brain," explained Cone, a senior scientist at the OHSU Vollum Institute. "We hope future research will hopefully distinguish between the roles of these two production sites so that we may better understand weight regulation and energy homeostasis in the body."

These latest findings follow a study published in August 2002 that identified and characterized peripheral hormone peptide YY (PYY). PYY appears to have the opposite effect as ghrelin – reducing appetite instead of increasing it. OHSU researchers and their collaborators found that by introducing PYY into the bloodstreams of both humans and mice, a temporary, but measurable drop in appetite and food ingestion occurred.


###
This research was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Center for Research Resources, both components of the National Institutes of Health.


Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>