Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU scientists locate, characterize key hormone involved in appetite control

21.02.2003


Increasing hormone causes increase of appetite, eating



Researchers at Oregon Health & Science University (OHSU) have identified a key hormone involved in appetite control and demonstrated its effect on the brain. Scientists have shown that the hormone, called ghrelin, activates specialized neurons in the hypothalamus involved in weight regulation. The research involved scientists at several collaborating institutions, including: Yale Medical School, Baylor College of Medicine, the University of Alberta and Lilly Research Laboratories. The results are printed in the Feb. 20 edition of the journal Neuron.

Researchers believe this information could be used to develop drugs aimed at stimulating appetite in patients who have undergone extreme weight loss due to illness, a condition known as cachexia. These pharmaceuticals could also assist children who are developing at a slower than normal rate. Conversely, drugs aimed at limiting production of the hormone might be developed to reduce appetite for those battling severe obesity.


"Ghrelin is a hormone produced in the stomach with the ability to stimulate feeding when introduced to specialized weight regulation brain cells called neuropeptide Y neurons. In fact, past research has shown that when ghrelin levels are increased in mice for an extended period, the mice gain weight," said Michael Cowley, Ph.D., an assistant scientist in the Division of Neuroscience at the OHSU Oregon National Primate Research Center and lead author of the study. "In both mice and humans, ghrelin levels increase naturally in response to weight loss or reduced caloric intake. As expected, the hormone diminishes in response to food intake. In other words, it’s believed to be part of the body’s natural signaling system which informs the brain when it’s time to eat."

To pinpoint and witness the effects of ghrelin in the brain, the scientists used a method pioneered by OHSU researchers Cowley, Roger Cone, Ph.D., and Malcolm Low, M.D., Ph.D. The researchers used a fluorescent protein to highlight certain neurons, making the brain cells distinguishable from other surrounding neurons. They then used tiny electrodes to record cell activity in response to ghrelin.

"It is remarkable how such a relatively small group of interconnected neurons deep in the brain coordinate the daily signals of hunger and satiety with the body’s long-term energy stores to normally maintain a constant body weight," said Low, a scientist in the Vollum Institute at OHSU.

The research team also located a new source for ghrelin production in the body. The site is located in a section of the hypothalamus that had no previously known function and that is near the brain region affected by the hormone.

"This research shows that there are two sites where increased appetite may be generated, the stomach and the brain," explained Cone, a senior scientist at the OHSU Vollum Institute. "We hope future research will hopefully distinguish between the roles of these two production sites so that we may better understand weight regulation and energy homeostasis in the body."

These latest findings follow a study published in August 2002 that identified and characterized peripheral hormone peptide YY (PYY). PYY appears to have the opposite effect as ghrelin – reducing appetite instead of increasing it. OHSU researchers and their collaborators found that by introducing PYY into the bloodstreams of both humans and mice, a temporary, but measurable drop in appetite and food ingestion occurred.


###
This research was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Center for Research Resources, both components of the National Institutes of Health.


Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>