Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fly mutation suggests link to human brain disease


Greater insight into human brain disease may emerge from studies of a new genetic mutation that causes adult fruit flies to develop symptoms akin to Alzheimer’s disease.

“This is the first fruit fly mutant to show some of the outward, physical manifestations common to certain major human neurodegenerative diseases,” said principal investigator Michael McKeown, a biology professor at Brown University.

A research team found the mutation in a gene they named “blue cheese.” Reporting in the Feb. 15 issue of the Journal of Neuroscience, the researchers describe blue cheese mutations that lead normal-appearing adult flies (genus Drosophila) to die early from extensive cell death in the brain, neural degeneration, and build-up of protein aggregates.

“These aggregates contain the Drosophila version of proteins that are the major components of plaques that form in the brains of human Alzheimer’s patients,” said the study’s lead author, biologist Kim D. Finley, of the Salk Institute for Biological Studies. “The presence of these proteins in human plaques is at times used as a diagnostic tool for Alzheimer’s disease.”

Genes first identified in Drosophila are often named for a mutant characteristic, said Finley. “The first obvious feature that we noted in older mutant flies was the slow accumulation of dark protein aggregates throughout the brain,” she said. “This reminded us of moldy versions of marbled and veined cheeses, thus the name blue cheese.”

The protein encoded by blue cheese also identifies a new family of proteins present in humans and other vertebrates, as well as in flies, said McKeown. “Our work on blue cheese not only identifies a gene needed for adult neural survival, it also allows identification of the members of this new family,” he said.

Similar blue cheese genes are found in species ranging from worms to humans. The protein encoded by blue cheese – the “blue cheese protein” – may be involved in transport or degradation of proteins and in other brain functions, said the researchers. Fruit flies have similar, yet fewer genes, compared to humans. One of the quickest ways to learn about potential effects of genetic mutations in humans is to screen and sample mutant fly genes.

“Drosophila models have been developed that mimic many aspects of human neural degeneration, primarily by expression of mutant proteins known to cause disease in humans,” said Finley. “In turn these models have been used to identify additional genes involved with the degenerative process, allowing new insights that may result in potential treatments of these disorders.”

In many aspects of gene regulation, growth, differentiation and cell function, Drosophila and human proteins appear very similar and have highly similar actions, said McKeown.

“These observations alone suggest a high likelihood that alterations in human blue cheese will contribute to some degenerative disorders in humans,” he said. In fact, “analysis of the human genetic map shows that blue cheese gene is in a region associated with several familial neurodegenerative diseases,” said McKeown.

For information from the Salk Institute for Biological Studies, contact Robert Bradford, senior director for communications, at (858) 453-4100, ext. 1290, or

The study was funded by grants from the National Institutes of Health.

Scott Turner | Brown University
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>