Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fly mutation suggests link to human brain disease

21.02.2003


Greater insight into human brain disease may emerge from studies of a new genetic mutation that causes adult fruit flies to develop symptoms akin to Alzheimer’s disease.

“This is the first fruit fly mutant to show some of the outward, physical manifestations common to certain major human neurodegenerative diseases,” said principal investigator Michael McKeown, a biology professor at Brown University.

A research team found the mutation in a gene they named “blue cheese.” Reporting in the Feb. 15 issue of the Journal of Neuroscience, the researchers describe blue cheese mutations that lead normal-appearing adult flies (genus Drosophila) to die early from extensive cell death in the brain, neural degeneration, and build-up of protein aggregates.



“These aggregates contain the Drosophila version of proteins that are the major components of plaques that form in the brains of human Alzheimer’s patients,” said the study’s lead author, biologist Kim D. Finley, of the Salk Institute for Biological Studies. “The presence of these proteins in human plaques is at times used as a diagnostic tool for Alzheimer’s disease.”

Genes first identified in Drosophila are often named for a mutant characteristic, said Finley. “The first obvious feature that we noted in older mutant flies was the slow accumulation of dark protein aggregates throughout the brain,” she said. “This reminded us of moldy versions of marbled and veined cheeses, thus the name blue cheese.”

The protein encoded by blue cheese also identifies a new family of proteins present in humans and other vertebrates, as well as in flies, said McKeown. “Our work on blue cheese not only identifies a gene needed for adult neural survival, it also allows identification of the members of this new family,” he said.

Similar blue cheese genes are found in species ranging from worms to humans. The protein encoded by blue cheese – the “blue cheese protein” – may be involved in transport or degradation of proteins and in other brain functions, said the researchers. Fruit flies have similar, yet fewer genes, compared to humans. One of the quickest ways to learn about potential effects of genetic mutations in humans is to screen and sample mutant fly genes.

“Drosophila models have been developed that mimic many aspects of human neural degeneration, primarily by expression of mutant proteins known to cause disease in humans,” said Finley. “In turn these models have been used to identify additional genes involved with the degenerative process, allowing new insights that may result in potential treatments of these disorders.”

In many aspects of gene regulation, growth, differentiation and cell function, Drosophila and human proteins appear very similar and have highly similar actions, said McKeown.

“These observations alone suggest a high likelihood that alterations in human blue cheese will contribute to some degenerative disorders in humans,” he said. In fact, “analysis of the human genetic map shows that blue cheese gene is in a region associated with several familial neurodegenerative diseases,” said McKeown.

For information from the Salk Institute for Biological Studies, contact Robert Bradford, senior director for communications, at (858) 453-4100, ext. 1290, or bradford@salk.edu.

The study was funded by grants from the National Institutes of Health.

Scott Turner | Brown University
Further information:
http://www.brown.edu/Administration/News_Bureau/2002-03/02-068.html

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>