Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Molecular Self-Assembly Technique May Mimic how Cells Assemble Themselves

21.02.2003


Researchers from the University of Pennsylvania and the University of Sheffield report in the Feb. 21 issue of Science that they have created tree-like molecules that assemble themselves into precisely structured building blocks of a quarter- million atoms. Such building blocks may be precursors to designing nanostructures for molecular electronics or photonics materials, which "steer" light in the same way computer chips steer electrons.

Virgil Percec, the P. Roy Vagelos Chair and Professor of Chemistry at the University of Pennsylvania, and his colleagues also provide chemists with pointers for designing variations of the tree-like molecules to form even larger-scale structures. The work is funded by the Engineering and Physical Sciences Research Council in the United Kingdom and the U.S. National Science Foundation, an independent federal agency that supports fundamental research in all fields of science and engineering.

"Percec and his collaborators have developed a model that may mimic what happens in cell self-assembly," said Andrew Lovinger, NSF program officer. "This is the first time where you get large- scale supramolecular structures to assemble themselves into such exceptionally large and complex structures."



The goal of photonics is to control light the way electronics control and use electrons. A working photonics crystal would have to be approximately as large as the light’s wavelength-on the order of hundreds or thousands of nanometers-yet precisely structured to have predictable and reproducible interactions with the light. The techniques developed by Percec and colleagues may help chemists design self-assembling materials that approach photonics size.

"Photonics crystals require repeating units whose size is in the range of the wavelength of light," Percec said. "So far, we’re the only ones who can design with the precision of atoms but at a nanometer scale. This sort of precision and behavior is previously unknown in organic chemistry."

The researchers start with tree-like organic molecules, called dendrons, each of which is roughly cone-shaped. Twelve of the dendrons assemble themselves into 8,500-atom spheres. Once assembled, the spheres become a "liquid crystal," a material that flows like a liquid but has some properties of a crystalline solid. Liquid crystals are commonly found in flat-panel computer screens and many other devices.

In the right conditions, liquid crystal molecules "pack" themselves into very regular, repeating patterns, called lattices. A common lattice structure resembles neatly stacked layers of golf balls in a box. However, instead of packing into common lattices, the spheres created by Percec’s team arrange themselves into much more complex formations.

"We created extremely large objects that pack into the most complex lattices rather than the simplest ones that everyone expected," Percec said. "They have lattices that we haven’t seen before with organic molecules. They behave like heavy atoms, with a hard core and a soft outer part, like the electron clouds surrounding metals such as uranium."

Because they are constructed from dendrons, the spheres aren’t solid, but instead have a brush-like surface composed of the dendrons’ "branches." The brush-like surface allows the spheres to deform slightly and fill space more like soap bubbles than like golf balls. However, the spheres are firm enough to create repetitive lattices.

In this case, the repetitive "building block," or unit cell, comprises 30 spheres-more than 250,000 atoms-in a rectangular volume nearly 20 nanometers by 10 nanometers. For comparison, the rhinoviruses responsible for many human colds have diameters of about 25 nanometers. The Science paper provides pointers that may allow chemists to make even larger spheres that will pack into more complex lattices that are large enough to scatter light.


NSF Science Expert: Andrew J. Lovinger, 703-292-4933, alovinge@nsf.gov
Principal Investigator: Virgil Percec, 215-573-5527, percec@sas.upenn.edu

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Julie A. Smith | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/
http://www.fastlane.nsf.gov/a6/A6Start.htm

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>