Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Molecular Self-Assembly Technique May Mimic how Cells Assemble Themselves

21.02.2003


Researchers from the University of Pennsylvania and the University of Sheffield report in the Feb. 21 issue of Science that they have created tree-like molecules that assemble themselves into precisely structured building blocks of a quarter- million atoms. Such building blocks may be precursors to designing nanostructures for molecular electronics or photonics materials, which "steer" light in the same way computer chips steer electrons.

Virgil Percec, the P. Roy Vagelos Chair and Professor of Chemistry at the University of Pennsylvania, and his colleagues also provide chemists with pointers for designing variations of the tree-like molecules to form even larger-scale structures. The work is funded by the Engineering and Physical Sciences Research Council in the United Kingdom and the U.S. National Science Foundation, an independent federal agency that supports fundamental research in all fields of science and engineering.

"Percec and his collaborators have developed a model that may mimic what happens in cell self-assembly," said Andrew Lovinger, NSF program officer. "This is the first time where you get large- scale supramolecular structures to assemble themselves into such exceptionally large and complex structures."



The goal of photonics is to control light the way electronics control and use electrons. A working photonics crystal would have to be approximately as large as the light’s wavelength-on the order of hundreds or thousands of nanometers-yet precisely structured to have predictable and reproducible interactions with the light. The techniques developed by Percec and colleagues may help chemists design self-assembling materials that approach photonics size.

"Photonics crystals require repeating units whose size is in the range of the wavelength of light," Percec said. "So far, we’re the only ones who can design with the precision of atoms but at a nanometer scale. This sort of precision and behavior is previously unknown in organic chemistry."

The researchers start with tree-like organic molecules, called dendrons, each of which is roughly cone-shaped. Twelve of the dendrons assemble themselves into 8,500-atom spheres. Once assembled, the spheres become a "liquid crystal," a material that flows like a liquid but has some properties of a crystalline solid. Liquid crystals are commonly found in flat-panel computer screens and many other devices.

In the right conditions, liquid crystal molecules "pack" themselves into very regular, repeating patterns, called lattices. A common lattice structure resembles neatly stacked layers of golf balls in a box. However, instead of packing into common lattices, the spheres created by Percec’s team arrange themselves into much more complex formations.

"We created extremely large objects that pack into the most complex lattices rather than the simplest ones that everyone expected," Percec said. "They have lattices that we haven’t seen before with organic molecules. They behave like heavy atoms, with a hard core and a soft outer part, like the electron clouds surrounding metals such as uranium."

Because they are constructed from dendrons, the spheres aren’t solid, but instead have a brush-like surface composed of the dendrons’ "branches." The brush-like surface allows the spheres to deform slightly and fill space more like soap bubbles than like golf balls. However, the spheres are firm enough to create repetitive lattices.

In this case, the repetitive "building block," or unit cell, comprises 30 spheres-more than 250,000 atoms-in a rectangular volume nearly 20 nanometers by 10 nanometers. For comparison, the rhinoviruses responsible for many human colds have diameters of about 25 nanometers. The Science paper provides pointers that may allow chemists to make even larger spheres that will pack into more complex lattices that are large enough to scatter light.


NSF Science Expert: Andrew J. Lovinger, 703-292-4933, alovinge@nsf.gov
Principal Investigator: Virgil Percec, 215-573-5527, percec@sas.upenn.edu

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Julie A. Smith | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/
http://www.fastlane.nsf.gov/a6/A6Start.htm

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>