Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Montreal Neurological Institute Researcher First to Discover That Normal Nerve Cells Can Mimic Viruses

20.02.2003


Montreal Neurological Institute researcher Dr. Wayne Sossin has discovered that nerve cells can bypass the cell’s normal protein-making machinery in the same way that viruses do when they infect a cell. In a study published on-line today in Nature Neuroscience, Dr. Sossin and colleagues describe the first example of regulated IRES (internal ribosome entry site) usage after a physiological stimulus in neurons.

When a virus infects a cell, its goal is to make more virus particles. To do this, a virus takes over the cell’s protein making machinery (the ribosome), so that the cell essentially becomes a viral protein factory. It does this by using an internal ribosome entry site (IRES); which shuts down and bypasses the normal mechanisms that regulate binding of messenger RNAs to ribosomes. While many viral messenger RNAs are known to possess an IRES, few normal cellular RNAs do. Abnormal IRES regulation has been correlated with two human diseases- multiple myeloma and Charcot-Marie-Tooth disease. This is the first time that scientists have demonstrated that normal nerve cells can use an IRES to produce large quantities of protein under physiological conditions.

Dr. Sossin and colleagues made their discovery in a study of egg laying in the sea slug Aplysia. During egg laying, protein production of the egg laying hormone (ELH) increases dramatically. Sossin and colleagues discovered that the ELH messenger RNA contains an IRES. They demonstrated that after egg laying, nerve cells producing ELH switch from the normal cellular mechanism of protein production to one that uses the IRES. This switch allows for massive amounts of ELH protein to be produced at the expense of other cellular proteins, mimicking what a virus does when it infects a host cell.



“Egg laying is an important investment for an animal, thus when stimulated to do so, it wants to get it right,” explained Dr. Sossin. “In order to do this, the cell must make a lot of ELH protein in a short period of time to signal the release of eggs. One way to do this is to temporarily stop making other proteins and concentrate on making one particular protein – in this instance, the ELH.”

“The new discovery of Dr. Sossin reveals an unexpected regulatory role of the IRES in nerve cells. This finding could have important implications for understanding the learning and memory processes in the brain” explained Dr. Nahum Sonenberg, Department of Biochemistry at McGill University, who first discovered the IRES in poliovirus in 1988. Other non-pathological uses of IRES regulated protein production could include production of hormones or growth factors.

Dr. Sossin’s paper, An Activity-dependent switch to cap-independent translation triggered by eIF4E dephosphorylation, can be viewed on-line at Nature Neurscience.

Dr. Wayne Sossin, a scientist at the Montreal Neurological Institute, is an Associate Professor of Neurology and Neurosurgery and Anatomy and Cell Biology at McGill University. Dr. Sossin obtained his S.B. (Biology) and S.B. (Computer Science) in 1984 from MIT. He completed his Ph.D. in 1989 at Stanford University and conducted his Postdoctoral research at Columbia University. Dr. Sossin’s research has led to several fundamental principles of protein processing and packaging in neurons. He is the author of more than 40 scientific publications.



The Montreal Neurological Institute (www.mni.mcgill.ca) is a McGill University (www.mcgill.ca) research and teaching institute, dedicated to the study of the nervous system and neurological diseases. Since its founding in 1934 by the renowned Dr. Wilder Penfield, the MNI has helped put Canada on the international map. It is one of the world’s largest institutes of its kind; MNI researchers are world leaders in biotechnology, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.



For further information or to interview Dr. Sossin, please contact:
Sandra McPherson
Montreal Neurological Institute
3801 University Street
Montreal, QC H3A 2B4

Tel: (514) 398-1902
Fax: (514) 398-8072
Email: sandra.mcpherson@mcgill.ca

Sandra McPherson | McGill University
Further information:
http://www.mni.mcgill.ca/announce/sossin_e.htm
http://www.mni.mcgill.ca

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>