Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals defy species classification

18.02.2003


Classifying corals in terms of species is a risky business. Biologist Onno Diekmann from the University of Groningen has discovered that four species of stone corals differ so little in terms of their genetic material that they can scarcely be termed separate species.



Corals are formed by a collection of identical coral polyps which together form a coral colony. Onno Diekmann compared the genetic material from six different species of coral from the Madracis genus, which are found in the coral reefs around Curaçao. The coral exists in many different physical forms. There are knobby, branched and crust-forming colonies. The corals grow at depths varying from 2 to 70 metres. The external appearance is partly determined by the environmental conditions, such as temperature, water movements and the amount of available light. Therefore, it is difficult to determine if two coral colonies belong to the same species, if only the external appearance is used.

Two forms of Madracis were found to be clearly distinct species. Yet four other species exhibited a considerable overlap in the genetic variation. Therefore, which of the four species these corals belong to cannot be determined with any certainty. The spectrum of intermediate forms indicates that these four species can interbreed. However, the four species do differ in their physical appearance. In addition to the colony form there are also smaller characteristics where differences might be exhibited. Yet none of the individual microcharacteristics can be used to unequivocally determine which species an individual coral belongs to. For this several characteristics need to be analysed at the same time.


It is difficult to apply the term ’species’ to corals. Perhaps this is because they are found in the ocean where physical barriers to reproduction between different species are not or are scarcely present. The ocean currents determine the direction in which a species can be moved. Due to sea level changes the ocean current patterns are highly variable as a result of which the mixing of various coral ’species’ can continually occur.

For corals where fertilisation and development of the larvae takes place in water, it was already known that differences between species can be sufficiently small to allow interbreeding to take place with the production of fertile offspring. This research on Madracis has demonstrated that corals which reproduce by internal fertilisation and the hatching of offspring can also interbreed.



For further information please contact Onno Diekmann (Department of Marine Biology, University of Groningen), tel +31 (0)50 3632226, fax +31 (0)50 3632261, e-mail: o.e.diekmann@biol.rug.nl. The defence of the doctoral thesis will take place on 27 February 2003. Mr Diekman’s supervisor is Prof. R.P.M. Bak.

Image at www.nwo.nl/nieuws

The research was funded by the Netherlands Organisation for Scientific Research (NWO).


Nalinie Moerlie | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>