Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals defy species classification

18.02.2003


Classifying corals in terms of species is a risky business. Biologist Onno Diekmann from the University of Groningen has discovered that four species of stone corals differ so little in terms of their genetic material that they can scarcely be termed separate species.



Corals are formed by a collection of identical coral polyps which together form a coral colony. Onno Diekmann compared the genetic material from six different species of coral from the Madracis genus, which are found in the coral reefs around Curaçao. The coral exists in many different physical forms. There are knobby, branched and crust-forming colonies. The corals grow at depths varying from 2 to 70 metres. The external appearance is partly determined by the environmental conditions, such as temperature, water movements and the amount of available light. Therefore, it is difficult to determine if two coral colonies belong to the same species, if only the external appearance is used.

Two forms of Madracis were found to be clearly distinct species. Yet four other species exhibited a considerable overlap in the genetic variation. Therefore, which of the four species these corals belong to cannot be determined with any certainty. The spectrum of intermediate forms indicates that these four species can interbreed. However, the four species do differ in their physical appearance. In addition to the colony form there are also smaller characteristics where differences might be exhibited. Yet none of the individual microcharacteristics can be used to unequivocally determine which species an individual coral belongs to. For this several characteristics need to be analysed at the same time.


It is difficult to apply the term ’species’ to corals. Perhaps this is because they are found in the ocean where physical barriers to reproduction between different species are not or are scarcely present. The ocean currents determine the direction in which a species can be moved. Due to sea level changes the ocean current patterns are highly variable as a result of which the mixing of various coral ’species’ can continually occur.

For corals where fertilisation and development of the larvae takes place in water, it was already known that differences between species can be sufficiently small to allow interbreeding to take place with the production of fertile offspring. This research on Madracis has demonstrated that corals which reproduce by internal fertilisation and the hatching of offspring can also interbreed.



For further information please contact Onno Diekmann (Department of Marine Biology, University of Groningen), tel +31 (0)50 3632226, fax +31 (0)50 3632261, e-mail: o.e.diekmann@biol.rug.nl. The defence of the doctoral thesis will take place on 27 February 2003. Mr Diekman’s supervisor is Prof. R.P.M. Bak.

Image at www.nwo.nl/nieuws

The research was funded by the Netherlands Organisation for Scientific Research (NWO).


Nalinie Moerlie | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>