Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human eye can self-correct some optical faults, Cornell study reveals

18.02.2003


While the vision-impaired Hubble Space Telescope needed optical doctoring from shuttle astronauts, vision researchers back on Earth were wondering if the human eye was clever enough to fix itself.

Now a neurobiology study at Cornell University suggests that internal parts of the eye indeed can compensate for less-than-perfect conditions in other parts -- either developmentally (during the lifetime of one individual) or genetically (over many generations).

Results of the study, "Internal compensation for corneal astigmatism and high-order aberrations of the eye," were reported to the fourth International Congress of Wavefront Sensing and Aberration-free Refraction Correction, Feb. 14-16 in San Francisco, by Howard C. Howland, Jennifer E. Kelly and Toshifumi Mihashi. Howland is a Cornell professor of neurobiology and behavior and director of the university’s Developmental Vision Laboratory; Mihashi is the chief scientist at the research institute of the Tokyo-based Topcon Corp., manufacturer of a wavefront analyzer used in the study; and Kelly is a Cornell senior who used the wavefront analyzer as part of her honors thesis by testing the vision of 20 other undergraduate students.



Wavefront analysis is a recently developed technique for "seeing," with computer-based mathematical simulation, more precisely what the eye perceives. A beam of harmless laser light shines through the eye’s optics (the transparent cornea, which begins to focus light, and the lens, which completes the focusing) toward the retina, where millions of photoreceptor cones and rods line the rear surface of the eye.

As the light rays are reflected back through the internal optics and exit the eye, the wavefront analyzer measures and computes deviations from a perfectly formed light beam or test pattern a short distance in front of the eye. Light rays exiting an optically perfect eye should be perfectly parallel, but irregularities in the thickness or shape of the cornea or a less-than-perfect lens can cause the exiting light rays to become nonparallel. A test pattern (produced by light passing though regularly spaced lenslets to form a grid, something like the lines on graph paper) should form a regular array of luminous points in an optically perfect eye, but a distorted pattern can tell the wavefront analyzer a great deal about irregularities in the cornea and lens.

The Cornell study, which was funded, in part, by Topcon Corp., and built upon earlier research from Spanish colleagues, looked for ways the eye might compensate internally for several kinds of optical faults. Among them:

o Corneal astigmatism, which is caused by irregularities in the topography of the cornea and can produce a distorted image;

o lateral coma, a so-called high-order aberration that is caused by the line of sight not being along the axis of symmetry of the eye and produces comet-shaped images of points of light; and

o spherical aberration, also a high order aberration, is what afflicted the Hubble Space Telescope because its main mirror was too flat on the edge. Spherical aberration in the human eye is caused by a spherical-shaped cornea and produces blurring of the retinal image.

Howland, who for more than 20 years has studied the development of vision defects in children, has been particularly interested in the possibility of "feedback loops" by which the brain might direct parts of the eye to change shape and compensate for optical aberrations. Reporting on the wavefront analysis of internal compensation, he says: "We found compensation by internal optics for three kinds of corneal aberrations of the 12 different aberrations we investigated. We found no evidence of developmental compensation for spherical aberration, but we did find some evidence for developmental compensation for corneal astigmatism. We’re beginning to think that compensation for lateral coma is genetic, not developmental."

He comments that all human eyes, even those that manage to produce perfect vision, have some deviations from the optically ideal properties in their constituent parts. "We’re talking about living, biological tissue here. The form and function of anything that’s living is a combination of its genetic background and the environment in which it is born, grows, lives and ages," he says, noting that many optical aberrations become more pronounced with advancing age.

"With a system as complex as vision, where so many things can go wrong, it’s a wonder we can see at all. Now we’re coming to realize," Howland says, "that visual acuity is a result of various component parts ’wanting’ to see better, if you will. They seem to be able to sense aberrations and to change shape and function, to some extent, to produce a better result. Some of this compensation occurs early in life, as our visual system is developing -- and to a lesser degree throughout our lives. Other compensations occurred long before we were born, as our distant ancestors evolved more perfect senses.

"And when our eyes can’t compensate internally," the neurobiologist says, "that’s when we look to those astronauts of the medical world -- the optometrists and ophthalmic surgeons -- to fix what nature couldn’t.

Roger Segelken | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb03/self_correct.hrs.html

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>