Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human eye can self-correct some optical faults, Cornell study reveals

18.02.2003


While the vision-impaired Hubble Space Telescope needed optical doctoring from shuttle astronauts, vision researchers back on Earth were wondering if the human eye was clever enough to fix itself.

Now a neurobiology study at Cornell University suggests that internal parts of the eye indeed can compensate for less-than-perfect conditions in other parts -- either developmentally (during the lifetime of one individual) or genetically (over many generations).

Results of the study, "Internal compensation for corneal astigmatism and high-order aberrations of the eye," were reported to the fourth International Congress of Wavefront Sensing and Aberration-free Refraction Correction, Feb. 14-16 in San Francisco, by Howard C. Howland, Jennifer E. Kelly and Toshifumi Mihashi. Howland is a Cornell professor of neurobiology and behavior and director of the university’s Developmental Vision Laboratory; Mihashi is the chief scientist at the research institute of the Tokyo-based Topcon Corp., manufacturer of a wavefront analyzer used in the study; and Kelly is a Cornell senior who used the wavefront analyzer as part of her honors thesis by testing the vision of 20 other undergraduate students.



Wavefront analysis is a recently developed technique for "seeing," with computer-based mathematical simulation, more precisely what the eye perceives. A beam of harmless laser light shines through the eye’s optics (the transparent cornea, which begins to focus light, and the lens, which completes the focusing) toward the retina, where millions of photoreceptor cones and rods line the rear surface of the eye.

As the light rays are reflected back through the internal optics and exit the eye, the wavefront analyzer measures and computes deviations from a perfectly formed light beam or test pattern a short distance in front of the eye. Light rays exiting an optically perfect eye should be perfectly parallel, but irregularities in the thickness or shape of the cornea or a less-than-perfect lens can cause the exiting light rays to become nonparallel. A test pattern (produced by light passing though regularly spaced lenslets to form a grid, something like the lines on graph paper) should form a regular array of luminous points in an optically perfect eye, but a distorted pattern can tell the wavefront analyzer a great deal about irregularities in the cornea and lens.

The Cornell study, which was funded, in part, by Topcon Corp., and built upon earlier research from Spanish colleagues, looked for ways the eye might compensate internally for several kinds of optical faults. Among them:

o Corneal astigmatism, which is caused by irregularities in the topography of the cornea and can produce a distorted image;

o lateral coma, a so-called high-order aberration that is caused by the line of sight not being along the axis of symmetry of the eye and produces comet-shaped images of points of light; and

o spherical aberration, also a high order aberration, is what afflicted the Hubble Space Telescope because its main mirror was too flat on the edge. Spherical aberration in the human eye is caused by a spherical-shaped cornea and produces blurring of the retinal image.

Howland, who for more than 20 years has studied the development of vision defects in children, has been particularly interested in the possibility of "feedback loops" by which the brain might direct parts of the eye to change shape and compensate for optical aberrations. Reporting on the wavefront analysis of internal compensation, he says: "We found compensation by internal optics for three kinds of corneal aberrations of the 12 different aberrations we investigated. We found no evidence of developmental compensation for spherical aberration, but we did find some evidence for developmental compensation for corneal astigmatism. We’re beginning to think that compensation for lateral coma is genetic, not developmental."

He comments that all human eyes, even those that manage to produce perfect vision, have some deviations from the optically ideal properties in their constituent parts. "We’re talking about living, biological tissue here. The form and function of anything that’s living is a combination of its genetic background and the environment in which it is born, grows, lives and ages," he says, noting that many optical aberrations become more pronounced with advancing age.

"With a system as complex as vision, where so many things can go wrong, it’s a wonder we can see at all. Now we’re coming to realize," Howland says, "that visual acuity is a result of various component parts ’wanting’ to see better, if you will. They seem to be able to sense aberrations and to change shape and function, to some extent, to produce a better result. Some of this compensation occurs early in life, as our visual system is developing -- and to a lesser degree throughout our lives. Other compensations occurred long before we were born, as our distant ancestors evolved more perfect senses.

"And when our eyes can’t compensate internally," the neurobiologist says, "that’s when we look to those astronauts of the medical world -- the optometrists and ophthalmic surgeons -- to fix what nature couldn’t.

Roger Segelken | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb03/self_correct.hrs.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>