Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human eye can self-correct some optical faults, Cornell study reveals

18.02.2003


While the vision-impaired Hubble Space Telescope needed optical doctoring from shuttle astronauts, vision researchers back on Earth were wondering if the human eye was clever enough to fix itself.

Now a neurobiology study at Cornell University suggests that internal parts of the eye indeed can compensate for less-than-perfect conditions in other parts -- either developmentally (during the lifetime of one individual) or genetically (over many generations).

Results of the study, "Internal compensation for corneal astigmatism and high-order aberrations of the eye," were reported to the fourth International Congress of Wavefront Sensing and Aberration-free Refraction Correction, Feb. 14-16 in San Francisco, by Howard C. Howland, Jennifer E. Kelly and Toshifumi Mihashi. Howland is a Cornell professor of neurobiology and behavior and director of the university’s Developmental Vision Laboratory; Mihashi is the chief scientist at the research institute of the Tokyo-based Topcon Corp., manufacturer of a wavefront analyzer used in the study; and Kelly is a Cornell senior who used the wavefront analyzer as part of her honors thesis by testing the vision of 20 other undergraduate students.



Wavefront analysis is a recently developed technique for "seeing," with computer-based mathematical simulation, more precisely what the eye perceives. A beam of harmless laser light shines through the eye’s optics (the transparent cornea, which begins to focus light, and the lens, which completes the focusing) toward the retina, where millions of photoreceptor cones and rods line the rear surface of the eye.

As the light rays are reflected back through the internal optics and exit the eye, the wavefront analyzer measures and computes deviations from a perfectly formed light beam or test pattern a short distance in front of the eye. Light rays exiting an optically perfect eye should be perfectly parallel, but irregularities in the thickness or shape of the cornea or a less-than-perfect lens can cause the exiting light rays to become nonparallel. A test pattern (produced by light passing though regularly spaced lenslets to form a grid, something like the lines on graph paper) should form a regular array of luminous points in an optically perfect eye, but a distorted pattern can tell the wavefront analyzer a great deal about irregularities in the cornea and lens.

The Cornell study, which was funded, in part, by Topcon Corp., and built upon earlier research from Spanish colleagues, looked for ways the eye might compensate internally for several kinds of optical faults. Among them:

o Corneal astigmatism, which is caused by irregularities in the topography of the cornea and can produce a distorted image;

o lateral coma, a so-called high-order aberration that is caused by the line of sight not being along the axis of symmetry of the eye and produces comet-shaped images of points of light; and

o spherical aberration, also a high order aberration, is what afflicted the Hubble Space Telescope because its main mirror was too flat on the edge. Spherical aberration in the human eye is caused by a spherical-shaped cornea and produces blurring of the retinal image.

Howland, who for more than 20 years has studied the development of vision defects in children, has been particularly interested in the possibility of "feedback loops" by which the brain might direct parts of the eye to change shape and compensate for optical aberrations. Reporting on the wavefront analysis of internal compensation, he says: "We found compensation by internal optics for three kinds of corneal aberrations of the 12 different aberrations we investigated. We found no evidence of developmental compensation for spherical aberration, but we did find some evidence for developmental compensation for corneal astigmatism. We’re beginning to think that compensation for lateral coma is genetic, not developmental."

He comments that all human eyes, even those that manage to produce perfect vision, have some deviations from the optically ideal properties in their constituent parts. "We’re talking about living, biological tissue here. The form and function of anything that’s living is a combination of its genetic background and the environment in which it is born, grows, lives and ages," he says, noting that many optical aberrations become more pronounced with advancing age.

"With a system as complex as vision, where so many things can go wrong, it’s a wonder we can see at all. Now we’re coming to realize," Howland says, "that visual acuity is a result of various component parts ’wanting’ to see better, if you will. They seem to be able to sense aberrations and to change shape and function, to some extent, to produce a better result. Some of this compensation occurs early in life, as our visual system is developing -- and to a lesser degree throughout our lives. Other compensations occurred long before we were born, as our distant ancestors evolved more perfect senses.

"And when our eyes can’t compensate internally," the neurobiologist says, "that’s when we look to those astronauts of the medical world -- the optometrists and ophthalmic surgeons -- to fix what nature couldn’t.

Roger Segelken | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb03/self_correct.hrs.html

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

A perfect sun-storm

28.09.2016 | Earth Sciences

New welding process joins dissimilar sheets better

28.09.2016 | Power and Electrical Engineering

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>