Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human eye can self-correct some optical faults, Cornell study reveals

18.02.2003


While the vision-impaired Hubble Space Telescope needed optical doctoring from shuttle astronauts, vision researchers back on Earth were wondering if the human eye was clever enough to fix itself.

Now a neurobiology study at Cornell University suggests that internal parts of the eye indeed can compensate for less-than-perfect conditions in other parts -- either developmentally (during the lifetime of one individual) or genetically (over many generations).

Results of the study, "Internal compensation for corneal astigmatism and high-order aberrations of the eye," were reported to the fourth International Congress of Wavefront Sensing and Aberration-free Refraction Correction, Feb. 14-16 in San Francisco, by Howard C. Howland, Jennifer E. Kelly and Toshifumi Mihashi. Howland is a Cornell professor of neurobiology and behavior and director of the university’s Developmental Vision Laboratory; Mihashi is the chief scientist at the research institute of the Tokyo-based Topcon Corp., manufacturer of a wavefront analyzer used in the study; and Kelly is a Cornell senior who used the wavefront analyzer as part of her honors thesis by testing the vision of 20 other undergraduate students.



Wavefront analysis is a recently developed technique for "seeing," with computer-based mathematical simulation, more precisely what the eye perceives. A beam of harmless laser light shines through the eye’s optics (the transparent cornea, which begins to focus light, and the lens, which completes the focusing) toward the retina, where millions of photoreceptor cones and rods line the rear surface of the eye.

As the light rays are reflected back through the internal optics and exit the eye, the wavefront analyzer measures and computes deviations from a perfectly formed light beam or test pattern a short distance in front of the eye. Light rays exiting an optically perfect eye should be perfectly parallel, but irregularities in the thickness or shape of the cornea or a less-than-perfect lens can cause the exiting light rays to become nonparallel. A test pattern (produced by light passing though regularly spaced lenslets to form a grid, something like the lines on graph paper) should form a regular array of luminous points in an optically perfect eye, but a distorted pattern can tell the wavefront analyzer a great deal about irregularities in the cornea and lens.

The Cornell study, which was funded, in part, by Topcon Corp., and built upon earlier research from Spanish colleagues, looked for ways the eye might compensate internally for several kinds of optical faults. Among them:

o Corneal astigmatism, which is caused by irregularities in the topography of the cornea and can produce a distorted image;

o lateral coma, a so-called high-order aberration that is caused by the line of sight not being along the axis of symmetry of the eye and produces comet-shaped images of points of light; and

o spherical aberration, also a high order aberration, is what afflicted the Hubble Space Telescope because its main mirror was too flat on the edge. Spherical aberration in the human eye is caused by a spherical-shaped cornea and produces blurring of the retinal image.

Howland, who for more than 20 years has studied the development of vision defects in children, has been particularly interested in the possibility of "feedback loops" by which the brain might direct parts of the eye to change shape and compensate for optical aberrations. Reporting on the wavefront analysis of internal compensation, he says: "We found compensation by internal optics for three kinds of corneal aberrations of the 12 different aberrations we investigated. We found no evidence of developmental compensation for spherical aberration, but we did find some evidence for developmental compensation for corneal astigmatism. We’re beginning to think that compensation for lateral coma is genetic, not developmental."

He comments that all human eyes, even those that manage to produce perfect vision, have some deviations from the optically ideal properties in their constituent parts. "We’re talking about living, biological tissue here. The form and function of anything that’s living is a combination of its genetic background and the environment in which it is born, grows, lives and ages," he says, noting that many optical aberrations become more pronounced with advancing age.

"With a system as complex as vision, where so many things can go wrong, it’s a wonder we can see at all. Now we’re coming to realize," Howland says, "that visual acuity is a result of various component parts ’wanting’ to see better, if you will. They seem to be able to sense aberrations and to change shape and function, to some extent, to produce a better result. Some of this compensation occurs early in life, as our visual system is developing -- and to a lesser degree throughout our lives. Other compensations occurred long before we were born, as our distant ancestors evolved more perfect senses.

"And when our eyes can’t compensate internally," the neurobiologist says, "that’s when we look to those astronauts of the medical world -- the optometrists and ophthalmic surgeons -- to fix what nature couldn’t.

Roger Segelken | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb03/self_correct.hrs.html

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>