Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nucleus: Not just a bag of chromosomes

17.02.2003


Educators and scientists should discard the idea that a cell’s nucleus is just a bag of chromosomes, according to Johns Hopkins’ cell biologist Kathy Wilson, Ph.D. In a Feb. 17 session at the annual meeting of the American Association for the Advancement of Science (AAAS) in Denver, Wilson and five others will introduce visual evidence of the nucleus’s newly recognized importance.


Frog Nuclei



"The old view is that the nucleus is simply a warehouse for chromosomes," says Wilson, associate professor of cell biology in the Johns Hopkins School of Medicine’s Institute for Basic Biomedical Sciences. "But new research and imaging techniques show that the nucleus is really the cell’s mothership, a crucial and very active source of information, support and control."

It’s not too surprising that the nucleus itself has been overshadowed by the easy-to-see reams of genetic material and the fascinatingly tiny machinery that loosens, prepares, reads and copies genes. But in the last 10 or 15 years, evidence has mounted that these interior processes are actively linked to the nucleus, not just randomly taking place inside it, says Wilson, also chair of the public information committee of the American Society for Cell Biology, which helped organize the session.


Wilson and others, for example, are investigating rope-like nuclear proteins called lamins, which form networks throughout the nucleus. A few years ago, scientists discovered that mutations in the gene for "A-type" lamins cause Emery-Dreifuss muscular dystrophy, the third most common of the muscle-wasting disorders.

"That changed everything," says Wilson. "Until then, it was difficult to get federal funding to study lamins -- they were seen as boring. However, once they were linked to a human disease, scientists inside and outside the field appreciated that these proteins are doing unexpected, unexplained things."

Subsequently, lamin A has been linked to five other diseases, affecting the skeleton, heart, brain and fat, notes Wilson.

Beyond lamins, there’s an emerging revolution in understanding cell division, says Wilson. While the general cycle is well understood -- chromosomes are copied and then pulled to opposite ends of the cell, and the cell splits in two -- the details are still fuzzy. For one, the chromosomes are inside the nucleus, but the machinery that pulls them to one side or the other is outside the nucleus.

"The nucleus itself has to disappear before the cell can divide, and everyone thought that it just fell apart," says Wilson. "But recent evidence shows that its breakdown is an orchestrated process similar to the pulling apart of the chromosomes. It seems to involve the same structures and the same tiny motors. It’s almost a practice run for moving the chromosomes."

Wilson notes that no college textbook yet reflects current understanding of the nucleus.

"Scientists studying the nucleus have just reached the point where we’ve discovered enough to talk about the bigger picture and how our seemingly separate areas overlap," she adds. "But it’s really important to develop an integrated view of the nucleus."

That’s one goal of the AAAS session, she notes. The scientists will present recent advances in six areas, including the disassembly of the nucleus during cell division, lamins, links between the nucleus and disease, implications of the "new" nucleus in gene therapy, and the structure and function of "pores" in the nuclear membrane. The best part of the session, Wilson says, is that there will be lots of "cool pictures."

In addition to Wilson, scheduled presenters are Andrew Belmont of the University of Illinois, Robert Goldman of Northwestern University School of Medicine, Howard Worman of Columbia University College of Physicians and Surgeons, Brian Burke of the University of Florida, and Douglass Forbes of the University of California at San Diego. Tim Richardson of the Toronto Hospital for Sick Children is producing video of various nuclear processes for the session.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/Images/images/frognuclei.jpg
http://www.aaas.org
http://www.ascb.org

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>