Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nucleus: Not just a bag of chromosomes

17.02.2003


Educators and scientists should discard the idea that a cell’s nucleus is just a bag of chromosomes, according to Johns Hopkins’ cell biologist Kathy Wilson, Ph.D. In a Feb. 17 session at the annual meeting of the American Association for the Advancement of Science (AAAS) in Denver, Wilson and five others will introduce visual evidence of the nucleus’s newly recognized importance.


Frog Nuclei



"The old view is that the nucleus is simply a warehouse for chromosomes," says Wilson, associate professor of cell biology in the Johns Hopkins School of Medicine’s Institute for Basic Biomedical Sciences. "But new research and imaging techniques show that the nucleus is really the cell’s mothership, a crucial and very active source of information, support and control."

It’s not too surprising that the nucleus itself has been overshadowed by the easy-to-see reams of genetic material and the fascinatingly tiny machinery that loosens, prepares, reads and copies genes. But in the last 10 or 15 years, evidence has mounted that these interior processes are actively linked to the nucleus, not just randomly taking place inside it, says Wilson, also chair of the public information committee of the American Society for Cell Biology, which helped organize the session.


Wilson and others, for example, are investigating rope-like nuclear proteins called lamins, which form networks throughout the nucleus. A few years ago, scientists discovered that mutations in the gene for "A-type" lamins cause Emery-Dreifuss muscular dystrophy, the third most common of the muscle-wasting disorders.

"That changed everything," says Wilson. "Until then, it was difficult to get federal funding to study lamins -- they were seen as boring. However, once they were linked to a human disease, scientists inside and outside the field appreciated that these proteins are doing unexpected, unexplained things."

Subsequently, lamin A has been linked to five other diseases, affecting the skeleton, heart, brain and fat, notes Wilson.

Beyond lamins, there’s an emerging revolution in understanding cell division, says Wilson. While the general cycle is well understood -- chromosomes are copied and then pulled to opposite ends of the cell, and the cell splits in two -- the details are still fuzzy. For one, the chromosomes are inside the nucleus, but the machinery that pulls them to one side or the other is outside the nucleus.

"The nucleus itself has to disappear before the cell can divide, and everyone thought that it just fell apart," says Wilson. "But recent evidence shows that its breakdown is an orchestrated process similar to the pulling apart of the chromosomes. It seems to involve the same structures and the same tiny motors. It’s almost a practice run for moving the chromosomes."

Wilson notes that no college textbook yet reflects current understanding of the nucleus.

"Scientists studying the nucleus have just reached the point where we’ve discovered enough to talk about the bigger picture and how our seemingly separate areas overlap," she adds. "But it’s really important to develop an integrated view of the nucleus."

That’s one goal of the AAAS session, she notes. The scientists will present recent advances in six areas, including the disassembly of the nucleus during cell division, lamins, links between the nucleus and disease, implications of the "new" nucleus in gene therapy, and the structure and function of "pores" in the nuclear membrane. The best part of the session, Wilson says, is that there will be lots of "cool pictures."

In addition to Wilson, scheduled presenters are Andrew Belmont of the University of Illinois, Robert Goldman of Northwestern University School of Medicine, Howard Worman of Columbia University College of Physicians and Surgeons, Brian Burke of the University of Florida, and Douglass Forbes of the University of California at San Diego. Tim Richardson of the Toronto Hospital for Sick Children is producing video of various nuclear processes for the session.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/Images/images/frognuclei.jpg
http://www.aaas.org
http://www.ascb.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>