Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism controls movement of cell structures

17.02.2003


UI researchers discover new mechanism controlling movement of cell structures



Organelles are compartments and structures inside cells that perform varied and vital functions, including energy production, storage and transportation of important substances and removal of waste products. Normal cellular function requires that organelles be positioned in specific locations in a cell. Thus, movement of the organelles to their appropriate destinations is critical.

A team of University of Iowa researchers has discovered a new mechanism that helps explain how organelles are delivered to the right place at the right time. The research findings appear in the Feb. 16 Nature Advance Online Publication.


Understanding how organelles get to their assigned cellular locations will improve understanding of embryonic development and may have implications for understanding many diseases including cancer and diabetes, said Lois Weisman, Ph.D., UI associate professor of biochemistry and principal investigator of the study.

Weisman and her colleagues made their discovery by studying organelle movement in yeast. The team identified a protein that specifically couples vacuoles (yeast organelles) to the organelle transportation system and also appears to plays a key role in controlling the timing and delivery of the vacuole to its final destination.

Most yeast proteins have direct humans counterparts known as homologs. This similarity makes yeast a good experimental organism because almost everything researchers learn about yeast cells is likely to be applicable to human cells, too. In addition, manipulating and analyzing yeast genes is much easier and faster than working with higher life forms.

The machinery that moves vacuoles in yeast also moves other organelles, as well. One question that interested Weisman and her colleagues was: how can this same mechanism move different organelles to different locations at different times?

The transport system acts like a cable car with motor molecules transporting organelles through the cell along cable-like structures. The protein discovered by the UI team specifically couples vacuoles to a motor molecule. The studies also suggest that when the vacuole arrives at its correct destination, the coupling protein is degraded, which causes the vacuole to be deposited in the right location.

"The protein we have discovered is called Vac17p. We found that it is involved in the specific coupling of vacuoles to the motor protein," Weisman said. "More surprisingly, we also found that regulation of the appearance and disappearance of this protein controls when that organelle moves and where it moves to."

Working with various yeast mutants, Fusheng Tang, Ph.D., UI postdoctoral researcher and lead author of the study, discovered that if the Vac17p protein does not get degraded, then the release mechanism is disrupted and the vacuole is not deposited in the correct cellular location. His research suggests that the controlled assembly and disassembly of the molecular transport complexes is critical for accurate and directed organelle movement.

"We were just trying to figure out how the specific coupling mechanism worked and then we also discovered this protein turnover mechanism, which seems to be critical for depositing the cargo at the right place and time," Weisman said.

Because the organelle transport system in yeast is essentially the same as the system found in higher animals including humans, the researchers believe that regulated disassembly of organelle transportation complexes may be a general mechanism for moving organelles to their final cellular destinations in all cells.



In addition to Weisman and Tang, other UI researchers involved in the study included research assistants, Emily Kauffman, Jennifer Novak and Johnathan Nau, and Natalie Catlett, Ph.D., who was a graduate student in Weisman’s lab.

The research was funded by grants from the National Institutes of Health and the National Science Foundation.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

WRITER: Jennifer Brown, jennifer-l-brown@uiowa.edu
MEDIA CONTACT: Becky Soglin, (319) 335-6660, becky-soglin@uiowa.edu

PHOTOS/GRAPHICS: A photo of Weisman is available for downloading at http:// www.biochem.uiowa.edu/faculty/weisman/index.htm

David Pedersen | EurekAlert!
Further information:
http://www.uiowa.edu/
http://www.biochem.uiowa.edu/faculty/weisman/index.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>