Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism controls movement of cell structures

17.02.2003


UI researchers discover new mechanism controlling movement of cell structures



Organelles are compartments and structures inside cells that perform varied and vital functions, including energy production, storage and transportation of important substances and removal of waste products. Normal cellular function requires that organelles be positioned in specific locations in a cell. Thus, movement of the organelles to their appropriate destinations is critical.

A team of University of Iowa researchers has discovered a new mechanism that helps explain how organelles are delivered to the right place at the right time. The research findings appear in the Feb. 16 Nature Advance Online Publication.


Understanding how organelles get to their assigned cellular locations will improve understanding of embryonic development and may have implications for understanding many diseases including cancer and diabetes, said Lois Weisman, Ph.D., UI associate professor of biochemistry and principal investigator of the study.

Weisman and her colleagues made their discovery by studying organelle movement in yeast. The team identified a protein that specifically couples vacuoles (yeast organelles) to the organelle transportation system and also appears to plays a key role in controlling the timing and delivery of the vacuole to its final destination.

Most yeast proteins have direct humans counterparts known as homologs. This similarity makes yeast a good experimental organism because almost everything researchers learn about yeast cells is likely to be applicable to human cells, too. In addition, manipulating and analyzing yeast genes is much easier and faster than working with higher life forms.

The machinery that moves vacuoles in yeast also moves other organelles, as well. One question that interested Weisman and her colleagues was: how can this same mechanism move different organelles to different locations at different times?

The transport system acts like a cable car with motor molecules transporting organelles through the cell along cable-like structures. The protein discovered by the UI team specifically couples vacuoles to a motor molecule. The studies also suggest that when the vacuole arrives at its correct destination, the coupling protein is degraded, which causes the vacuole to be deposited in the right location.

"The protein we have discovered is called Vac17p. We found that it is involved in the specific coupling of vacuoles to the motor protein," Weisman said. "More surprisingly, we also found that regulation of the appearance and disappearance of this protein controls when that organelle moves and where it moves to."

Working with various yeast mutants, Fusheng Tang, Ph.D., UI postdoctoral researcher and lead author of the study, discovered that if the Vac17p protein does not get degraded, then the release mechanism is disrupted and the vacuole is not deposited in the correct cellular location. His research suggests that the controlled assembly and disassembly of the molecular transport complexes is critical for accurate and directed organelle movement.

"We were just trying to figure out how the specific coupling mechanism worked and then we also discovered this protein turnover mechanism, which seems to be critical for depositing the cargo at the right place and time," Weisman said.

Because the organelle transport system in yeast is essentially the same as the system found in higher animals including humans, the researchers believe that regulated disassembly of organelle transportation complexes may be a general mechanism for moving organelles to their final cellular destinations in all cells.



In addition to Weisman and Tang, other UI researchers involved in the study included research assistants, Emily Kauffman, Jennifer Novak and Johnathan Nau, and Natalie Catlett, Ph.D., who was a graduate student in Weisman’s lab.

The research was funded by grants from the National Institutes of Health and the National Science Foundation.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

WRITER: Jennifer Brown, jennifer-l-brown@uiowa.edu
MEDIA CONTACT: Becky Soglin, (319) 335-6660, becky-soglin@uiowa.edu

PHOTOS/GRAPHICS: A photo of Weisman is available for downloading at http:// www.biochem.uiowa.edu/faculty/weisman/index.htm

David Pedersen | EurekAlert!
Further information:
http://www.uiowa.edu/
http://www.biochem.uiowa.edu/faculty/weisman/index.htm

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>