Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mechanism controls movement of cell structures


UI researchers discover new mechanism controlling movement of cell structures

Organelles are compartments and structures inside cells that perform varied and vital functions, including energy production, storage and transportation of important substances and removal of waste products. Normal cellular function requires that organelles be positioned in specific locations in a cell. Thus, movement of the organelles to their appropriate destinations is critical.

A team of University of Iowa researchers has discovered a new mechanism that helps explain how organelles are delivered to the right place at the right time. The research findings appear in the Feb. 16 Nature Advance Online Publication.

Understanding how organelles get to their assigned cellular locations will improve understanding of embryonic development and may have implications for understanding many diseases including cancer and diabetes, said Lois Weisman, Ph.D., UI associate professor of biochemistry and principal investigator of the study.

Weisman and her colleagues made their discovery by studying organelle movement in yeast. The team identified a protein that specifically couples vacuoles (yeast organelles) to the organelle transportation system and also appears to plays a key role in controlling the timing and delivery of the vacuole to its final destination.

Most yeast proteins have direct humans counterparts known as homologs. This similarity makes yeast a good experimental organism because almost everything researchers learn about yeast cells is likely to be applicable to human cells, too. In addition, manipulating and analyzing yeast genes is much easier and faster than working with higher life forms.

The machinery that moves vacuoles in yeast also moves other organelles, as well. One question that interested Weisman and her colleagues was: how can this same mechanism move different organelles to different locations at different times?

The transport system acts like a cable car with motor molecules transporting organelles through the cell along cable-like structures. The protein discovered by the UI team specifically couples vacuoles to a motor molecule. The studies also suggest that when the vacuole arrives at its correct destination, the coupling protein is degraded, which causes the vacuole to be deposited in the right location.

"The protein we have discovered is called Vac17p. We found that it is involved in the specific coupling of vacuoles to the motor protein," Weisman said. "More surprisingly, we also found that regulation of the appearance and disappearance of this protein controls when that organelle moves and where it moves to."

Working with various yeast mutants, Fusheng Tang, Ph.D., UI postdoctoral researcher and lead author of the study, discovered that if the Vac17p protein does not get degraded, then the release mechanism is disrupted and the vacuole is not deposited in the correct cellular location. His research suggests that the controlled assembly and disassembly of the molecular transport complexes is critical for accurate and directed organelle movement.

"We were just trying to figure out how the specific coupling mechanism worked and then we also discovered this protein turnover mechanism, which seems to be critical for depositing the cargo at the right place and time," Weisman said.

Because the organelle transport system in yeast is essentially the same as the system found in higher animals including humans, the researchers believe that regulated disassembly of organelle transportation complexes may be a general mechanism for moving organelles to their final cellular destinations in all cells.

In addition to Weisman and Tang, other UI researchers involved in the study included research assistants, Emily Kauffman, Jennifer Novak and Johnathan Nau, and Natalie Catlett, Ph.D., who was a graduate student in Weisman’s lab.

The research was funded by grants from the National Institutes of Health and the National Science Foundation.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

WRITER: Jennifer Brown,
MEDIA CONTACT: Becky Soglin, (319) 335-6660,

PHOTOS/GRAPHICS: A photo of Weisman is available for downloading at http://

David Pedersen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>