Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers identify protein that causes cell nucleoli to disassemble

17.02.2003


Protein used during cell development important in cloning technique



Researchers at the University of Minnesota have identified the protein responsible for disassembly of donor nucleoli in the context of nuclear cloning. Although it was already known that nucleoli, essential structures for protein synthesis, normally disassemble or disappear for a period of time in the early animal development and also during nuclear cloning, it was not known until this study what causes this phenomenon. Researchers hope the identification of the protein will lead to advances in cloning techniques and potential therapies. The study will be published in the journal Nature Cell Biology on Feb. 17 (www.nature.com/ncb)

“The nucleolus, one of the largest structures found within the cell’s nucleus, contains numerous proteins that have essential roles in cell biology, for cancer, stem cells, and aging,” said lead researcher Nobuaki Kikyo, M.D, Ph.D., assistant professor of medicine, Stem Cell Institute. “By understanding how the nucleolus disassembles and reassembles, we hope to learn more about normal cell development, the roles of specific proteins, and their impact on human diseases.”


In the cloning process, the genetic material is removed from an egg cell, and then the nucleus containing the genetic material from a somatic (or body-associated) cell is transplanted into the egg cell. Kikyo and his team recreated the normal procedure by mixing somatic cell nuclei and protein extract from frog eggs to purify the proteins responsible for nucleolar disassembly. Kikyo identified the proteins, FRGY2a and FRGY2b, that disassemble nucleoli without help of other proteins. The nucleoli are later reassembled as they normally would be.

“The study shows that FRGY2 proteins may be able to transform adult cells into something more like embryonic cells—young and actively proliferating cells with flexibility to turn into many types of cells,” said Kikyo. “Furthermore, this work shows that it is possible to dissect the very mysterious process – cloning – with a biochemical approach and identify key players in it.”

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>