Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers identify protein that causes cell nucleoli to disassemble

17.02.2003


Protein used during cell development important in cloning technique



Researchers at the University of Minnesota have identified the protein responsible for disassembly of donor nucleoli in the context of nuclear cloning. Although it was already known that nucleoli, essential structures for protein synthesis, normally disassemble or disappear for a period of time in the early animal development and also during nuclear cloning, it was not known until this study what causes this phenomenon. Researchers hope the identification of the protein will lead to advances in cloning techniques and potential therapies. The study will be published in the journal Nature Cell Biology on Feb. 17 (www.nature.com/ncb)

“The nucleolus, one of the largest structures found within the cell’s nucleus, contains numerous proteins that have essential roles in cell biology, for cancer, stem cells, and aging,” said lead researcher Nobuaki Kikyo, M.D, Ph.D., assistant professor of medicine, Stem Cell Institute. “By understanding how the nucleolus disassembles and reassembles, we hope to learn more about normal cell development, the roles of specific proteins, and their impact on human diseases.”


In the cloning process, the genetic material is removed from an egg cell, and then the nucleus containing the genetic material from a somatic (or body-associated) cell is transplanted into the egg cell. Kikyo and his team recreated the normal procedure by mixing somatic cell nuclei and protein extract from frog eggs to purify the proteins responsible for nucleolar disassembly. Kikyo identified the proteins, FRGY2a and FRGY2b, that disassemble nucleoli without help of other proteins. The nucleoli are later reassembled as they normally would be.

“The study shows that FRGY2 proteins may be able to transform adult cells into something more like embryonic cells—young and actively proliferating cells with flexibility to turn into many types of cells,” said Kikyo. “Furthermore, this work shows that it is possible to dissect the very mysterious process – cloning – with a biochemical approach and identify key players in it.”

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>