Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-Iowa scientists gain insight on how enzyme uses oxygen to produce useful chemicals

14.02.2003


When it comes to visual entertainment, three-dimensional viewing can be quite eye-opening. So, too, in science where a recent finding involving University of Iowa researchers used three-dimensional imaging to understand how a bacterial enzyme can take oxygen from air and use it to convert certain molecules into useful chemicals.



Specifically, the scientists saw that naphthalene dioxygenase, a bacterial enzyme, can bind oxygen (to iron) in a side-on fashion and add it on to naphthalene, a hydrocarbon molecule. The discovery is a result of the first three-dimensional imaging of naphthalene dioxygenase, a member of the family of enzymes called Rieske dioxygenases. The findings could help lead to the development of microorganisms that can clean up toxic and cancer-causing waste in the environment and to the development of novel drugs. The research results appear in the Feb. 14 issue of Science.

"The more we know about how enzymes catalyze reactions, the better able we are to modify them -- to improve or stop reactions, as desired" said S. Ramaswamy, Ph.D., UI professor of biochemistry and one of the study’s authors.


"The question was: how does the enzyme actually work at the molecular level?" said David Gibson, Ph.D., UI professor of microbiology and one of the study’s authors, whose previous research led to the discovery of the Rieske dioxygenase family of enzymes.

That seemingly straightforward question required seven years of collaborative work between the UI and the researchers in Sweden, beginning in 1996, and included assistance from the UI Center for Biocatalysis and Bioprocessing.

Ramaswamy and Gibson began research related to this investigation when Ramaswamy was a faculty member in the molecular biology department at Swedish University of Agricultural Sciences in Uppsala, Sweden. The paper’s lead author is Andreas Karlsson, who was a graduate student of Ramaswamy’s at the Swedish University and currently works for Aventis in Paris.

"People always thought that side-on binding of oxygen to iron existed, but no one had ever seen it in this enzyme or any other catalyst," said Ramaswamy, whose contribution to the project focused on how oxygen specifically binds to iron in the enzyme. Side-on refers to the newly visualized orientation of oxygen as it binds to iron.

The team used X-ray crystallography to determine the three-dimensional structure of the enzyme and then embarked on a series of experiments designed to take snapshots of the enzyme as it catalyzed the reaction, Gibson explained.

In all, the team had to analyze information from nearly 400 crystals in order to focus on five particular snapshots that led to the finding. The approach was revealing.

"Those five three-dimensional snapshots were the most relevant in understanding this side-on mechanism," Ramaswamy said. "Although we could not watch the reaction occur, the snapshots allowed us to see key points of the process."

Gibson likened the improved view to being able to "walk inside a molecule," just as one can walk inside a house and see the layout. By seeing how things are arranged within a molecule, scientists can better predict how to make changes to the structure and thus create desired reactions.

The researchers said the particular finding of their investigation suggests that other oxygen-using enzymes may also use a side-on binding mechanism. Thus, the study approach and results likely will impact how scientists investigate other enzymes of interest.

Scientists use a "lock and key" analogy to describe enzyme actions. In this study, naphthalene dioxygenase (enzyme) is a lock and naphthalene (substrate) is a key. For a reaction to occur between the two, the lock and key need to be complimentary.

"The thought was that there was one key and one lock, but now we are finding out that there can be many keys, or substrates, because we have the ability to go in and make a change to the lock, or enzyme," Gibson said.

"We can use this knowledge to engineer enzymes to do reactions and target other substrates in an effort to create new products or prevent other products from being created," Ramaswamy said.

For example, Gibson said, naphthalene dioxygenase is a key component in the development of the environmentally benign blue dye Indigo. In addition, a related Rieske dioxygenase synthesizes a key precursor in the production of Crixivan, an inhibitor of the AIDS virus.

The research team also included Juanito Parales, UI research assistant in microbiology; Rebecca Parales, Ph.D., UI research scientist in microbiology, and Hans Eklund, Ph.D., a faculty member at Swedish University of Agricultural Sciences.



Funding for the project included National Institutes of Health grants awarded to Ramaswamy and Gibson, a Swedish Research Council for Environment award to Ramaswamy and Eklund and a Swedish Research Council award to Eklund.

STORY SOURCE: University of Iowa Health Science Relations, 5141 Westlawn, Iowa City, Iowa 52242-1178

CONTACT: (media) Becky Soglin, 319-335-6660, becky-soglin@uiowa.edu


Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>