Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endothelial progenitor cells could serve as biological marker for cardiovascular disease

13.02.2003


The number of circulating endothelial progenitor cells in an individual’s blood –– the precursor cells to those that line the insides of blood vessels –– may be an indicator of overall cardiovascular health, according to research by scientists at the National Heart, Lung, and Blood Institute (NHLBI) and Emory University School of Medicine. The research was published in the Feb. 13 issue of the New England Journal of Medicine.



The endothelial cells lining the blood vessels provide essential communication between the vessels themselves and circulating blood cells, allowing the blood to flow smoothly. In diseases such as atherosclerosis, however, the endothelial layer becomes damaged and the vessels do not function efficiently. Until recently, scientists believed that nearby endothelial cells were recruited to help repair damaged blood vessels or form new ones to circumvent blocked vessels or to repair wounds. Evidence now shows, however, that endothelial progenitor cells, probably generated in the bone marrow, circulate in the bloodstream and are recruited to form new blood vessels or repair damaged ones.

The NHLBI and Emory scientists postulated that endothelial cells generated in the bone marrow contribute to continuous repair of the endothelial lining of blood vessels and that a lack of these cells can lead to vascular dysfunction and the progression of cardiovascular disease. They measured the number of "colony-forming units," or clumps, of endothelial progenitor cells in the peripheral blood of 45 men with a mean age of approximately 50 years. The men had various degrees of cardiovascular risk, but no history of cardiovascular disease. The researchers also measured blood vessel function using non-invasive high-resolution ultrasound of the brachial artery.


The research team calculated the subjects’ risk for cardiovascular disease using the Framingham risk factor score, commonly used to predict the risk of coronary artery disease in individuals without clinical disease. They found a significant inverse correlation between the number of circulating endothelial progenitor cells and the Framingham risk factor score. They also found a significant inverse correlation between the brachial artery measurement of vascular function and the number of circulating endothelial progenitor cells. The correlation between the brachial measurement of vascular function and the number of endothelial cells was stronger than it was between brachial function and conventional risk factors.

In order to test their hypothesis that endothelial progenitor cells age prematurely in individuals with higher cardiovascular risk factors, the investigators studied endothelial progenitor cells from subjects with either high or low Framingham risk scores. After seven days in culture, a significantly higher number of cells from the high-risk subjects had characteristics of senescence, or aging.

"Cardiovascular health is dependent on the ability of the blood vessels to continually repair themselves," says Arshed Quyyumi, MD, professor of medicine at Emory University School of Medicine, formerly of the NHLBI, and a member of the research team. "Evidence has shown that cardiovascular risk factors ultimately lead to damage to the endothelial layer of blood vessels. We can now speculate that continuing exposure to cardiovascular risk factors not only damages the endothelial layer, but may also lead to the depletion of circulating endothelial progenitor cells. Thus, the net damage to blood vessels and hence the risk of developing atherosclerosis depends not only on the exposure to risk factors, but also on the ability of the bone marrow-derived stem cells of endothelial origin to repair the damage.

"We will need larger studies to determine a definite cause and effect relationship between a decrease in these cells and adverse cardiovascular events. Our study did demonstrate, however, a correlation between endothelial progenitor cells, cardiovascular risk factors, increased senescence of endothelial progenitor cells, or stem cells, and vascular function. We are hopeful that further research will show that endothelial progenitor cells are a useful marker for cardiovascular disease risk."

Other members of the research team included Jonathan M. Hill, MRCP, Gloria Zalos, RN, Julian P.J. Halcox, MRCP, William H. Schenke, BA, Myron A. Waclawiw, PhD and Toren Finkel, MD, PhD, all of the NHLBI. The research was funded by the National Institutes of Health.

Ron Sauder | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>