Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Endothelial progenitor cells could serve as biological marker for cardiovascular disease


The number of circulating endothelial progenitor cells in an individual’s blood –– the precursor cells to those that line the insides of blood vessels –– may be an indicator of overall cardiovascular health, according to research by scientists at the National Heart, Lung, and Blood Institute (NHLBI) and Emory University School of Medicine. The research was published in the Feb. 13 issue of the New England Journal of Medicine.

The endothelial cells lining the blood vessels provide essential communication between the vessels themselves and circulating blood cells, allowing the blood to flow smoothly. In diseases such as atherosclerosis, however, the endothelial layer becomes damaged and the vessels do not function efficiently. Until recently, scientists believed that nearby endothelial cells were recruited to help repair damaged blood vessels or form new ones to circumvent blocked vessels or to repair wounds. Evidence now shows, however, that endothelial progenitor cells, probably generated in the bone marrow, circulate in the bloodstream and are recruited to form new blood vessels or repair damaged ones.

The NHLBI and Emory scientists postulated that endothelial cells generated in the bone marrow contribute to continuous repair of the endothelial lining of blood vessels and that a lack of these cells can lead to vascular dysfunction and the progression of cardiovascular disease. They measured the number of "colony-forming units," or clumps, of endothelial progenitor cells in the peripheral blood of 45 men with a mean age of approximately 50 years. The men had various degrees of cardiovascular risk, but no history of cardiovascular disease. The researchers also measured blood vessel function using non-invasive high-resolution ultrasound of the brachial artery.

The research team calculated the subjects’ risk for cardiovascular disease using the Framingham risk factor score, commonly used to predict the risk of coronary artery disease in individuals without clinical disease. They found a significant inverse correlation between the number of circulating endothelial progenitor cells and the Framingham risk factor score. They also found a significant inverse correlation between the brachial artery measurement of vascular function and the number of circulating endothelial progenitor cells. The correlation between the brachial measurement of vascular function and the number of endothelial cells was stronger than it was between brachial function and conventional risk factors.

In order to test their hypothesis that endothelial progenitor cells age prematurely in individuals with higher cardiovascular risk factors, the investigators studied endothelial progenitor cells from subjects with either high or low Framingham risk scores. After seven days in culture, a significantly higher number of cells from the high-risk subjects had characteristics of senescence, or aging.

"Cardiovascular health is dependent on the ability of the blood vessels to continually repair themselves," says Arshed Quyyumi, MD, professor of medicine at Emory University School of Medicine, formerly of the NHLBI, and a member of the research team. "Evidence has shown that cardiovascular risk factors ultimately lead to damage to the endothelial layer of blood vessels. We can now speculate that continuing exposure to cardiovascular risk factors not only damages the endothelial layer, but may also lead to the depletion of circulating endothelial progenitor cells. Thus, the net damage to blood vessels and hence the risk of developing atherosclerosis depends not only on the exposure to risk factors, but also on the ability of the bone marrow-derived stem cells of endothelial origin to repair the damage.

"We will need larger studies to determine a definite cause and effect relationship between a decrease in these cells and adverse cardiovascular events. Our study did demonstrate, however, a correlation between endothelial progenitor cells, cardiovascular risk factors, increased senescence of endothelial progenitor cells, or stem cells, and vascular function. We are hopeful that further research will show that endothelial progenitor cells are a useful marker for cardiovascular disease risk."

Other members of the research team included Jonathan M. Hill, MRCP, Gloria Zalos, RN, Julian P.J. Halcox, MRCP, William H. Schenke, BA, Myron A. Waclawiw, PhD and Toren Finkel, MD, PhD, all of the NHLBI. The research was funded by the National Institutes of Health.

Ron Sauder | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>