Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endothelial progenitor cells could serve as biological marker for cardiovascular disease

13.02.2003


The number of circulating endothelial progenitor cells in an individual’s blood –– the precursor cells to those that line the insides of blood vessels –– may be an indicator of overall cardiovascular health, according to research by scientists at the National Heart, Lung, and Blood Institute (NHLBI) and Emory University School of Medicine. The research was published in the Feb. 13 issue of the New England Journal of Medicine.



The endothelial cells lining the blood vessels provide essential communication between the vessels themselves and circulating blood cells, allowing the blood to flow smoothly. In diseases such as atherosclerosis, however, the endothelial layer becomes damaged and the vessels do not function efficiently. Until recently, scientists believed that nearby endothelial cells were recruited to help repair damaged blood vessels or form new ones to circumvent blocked vessels or to repair wounds. Evidence now shows, however, that endothelial progenitor cells, probably generated in the bone marrow, circulate in the bloodstream and are recruited to form new blood vessels or repair damaged ones.

The NHLBI and Emory scientists postulated that endothelial cells generated in the bone marrow contribute to continuous repair of the endothelial lining of blood vessels and that a lack of these cells can lead to vascular dysfunction and the progression of cardiovascular disease. They measured the number of "colony-forming units," or clumps, of endothelial progenitor cells in the peripheral blood of 45 men with a mean age of approximately 50 years. The men had various degrees of cardiovascular risk, but no history of cardiovascular disease. The researchers also measured blood vessel function using non-invasive high-resolution ultrasound of the brachial artery.


The research team calculated the subjects’ risk for cardiovascular disease using the Framingham risk factor score, commonly used to predict the risk of coronary artery disease in individuals without clinical disease. They found a significant inverse correlation between the number of circulating endothelial progenitor cells and the Framingham risk factor score. They also found a significant inverse correlation between the brachial artery measurement of vascular function and the number of circulating endothelial progenitor cells. The correlation between the brachial measurement of vascular function and the number of endothelial cells was stronger than it was between brachial function and conventional risk factors.

In order to test their hypothesis that endothelial progenitor cells age prematurely in individuals with higher cardiovascular risk factors, the investigators studied endothelial progenitor cells from subjects with either high or low Framingham risk scores. After seven days in culture, a significantly higher number of cells from the high-risk subjects had characteristics of senescence, or aging.

"Cardiovascular health is dependent on the ability of the blood vessels to continually repair themselves," says Arshed Quyyumi, MD, professor of medicine at Emory University School of Medicine, formerly of the NHLBI, and a member of the research team. "Evidence has shown that cardiovascular risk factors ultimately lead to damage to the endothelial layer of blood vessels. We can now speculate that continuing exposure to cardiovascular risk factors not only damages the endothelial layer, but may also lead to the depletion of circulating endothelial progenitor cells. Thus, the net damage to blood vessels and hence the risk of developing atherosclerosis depends not only on the exposure to risk factors, but also on the ability of the bone marrow-derived stem cells of endothelial origin to repair the damage.

"We will need larger studies to determine a definite cause and effect relationship between a decrease in these cells and adverse cardiovascular events. Our study did demonstrate, however, a correlation between endothelial progenitor cells, cardiovascular risk factors, increased senescence of endothelial progenitor cells, or stem cells, and vascular function. We are hopeful that further research will show that endothelial progenitor cells are a useful marker for cardiovascular disease risk."

Other members of the research team included Jonathan M. Hill, MRCP, Gloria Zalos, RN, Julian P.J. Halcox, MRCP, William H. Schenke, BA, Myron A. Waclawiw, PhD and Toren Finkel, MD, PhD, all of the NHLBI. The research was funded by the National Institutes of Health.

Ron Sauder | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>