Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Method for Separation of Organic Isomers

11.02.2003


Researchers in Oxford University’s Department of Inorganic Chemistry have devised a novel method for separating polar organic compounds, providing a useful alternative to the usual methods of chromatography or crystallisation.



The separation of mixtures of organic and inorganic compounds is of considerable importance in most areas of industrial and academic chemistry. In particular, isomeric mixtures are often difficult to separate and can require highly specialised techniques.

Conventional separation techniques involving chromatography or absorption are capable of removing impurities from process streams. Isomeric mixtures can be separated by crystallisation and other methods, but this is usually difficult due to the similar physical properties of the isomers. Any improvement in the efficiency or selectivity of a separation process can lead to increased product purity and significant cost savings.


The new Oxford technique provides a straightforward and novel method for separating polar organic compounds, and is a useful alternative to the usual methods of chromatography or crystallisation. Layered materials have been used for the intercalation of organic and inorganic species, principally with reference to specific clays. Specifically, layered double hydroxides have been used for the separation of 1,2- and 1,3- and 1,4-benzenedicarboxylic acids in greater than 95% selectivity. Research has continued, and in excess of 99% separation of 1,5-naphthalene sulphonate over the 2,6- isomer has been observed. Similar separations have been achieved for benzenedisulphonate. Differences in the intercalation rates between the mono- and di- substituted isomers have enabled a selectivity series to be devised. Work is ongoing to further evaluate this useful technique for isomer separation.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application for this technology and welcomes contact from companies interested in commercial exploitation.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/476.html

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>