Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Method for Separation of Organic Isomers

11.02.2003


Researchers in Oxford University’s Department of Inorganic Chemistry have devised a novel method for separating polar organic compounds, providing a useful alternative to the usual methods of chromatography or crystallisation.



The separation of mixtures of organic and inorganic compounds is of considerable importance in most areas of industrial and academic chemistry. In particular, isomeric mixtures are often difficult to separate and can require highly specialised techniques.

Conventional separation techniques involving chromatography or absorption are capable of removing impurities from process streams. Isomeric mixtures can be separated by crystallisation and other methods, but this is usually difficult due to the similar physical properties of the isomers. Any improvement in the efficiency or selectivity of a separation process can lead to increased product purity and significant cost savings.


The new Oxford technique provides a straightforward and novel method for separating polar organic compounds, and is a useful alternative to the usual methods of chromatography or crystallisation. Layered materials have been used for the intercalation of organic and inorganic species, principally with reference to specific clays. Specifically, layered double hydroxides have been used for the separation of 1,2- and 1,3- and 1,4-benzenedicarboxylic acids in greater than 95% selectivity. Research has continued, and in excess of 99% separation of 1,5-naphthalene sulphonate over the 2,6- isomer has been observed. Similar separations have been achieved for benzenedisulphonate. Differences in the intercalation rates between the mono- and di- substituted isomers have enabled a selectivity series to be devised. Work is ongoing to further evaluate this useful technique for isomer separation.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application for this technology and welcomes contact from companies interested in commercial exploitation.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/476.html

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>