Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of fat as a signal substance

10.02.2003


Fat is not only a much-discussed food substance. Fat can also function as a signal substance in the body and activate a special receptor in the cells of important organs like the heart and liver. This opens opportunities for new ways of explaining the genesis of diabetes, a disease that is strongly associated with obesity.



This new role for fat was discovered by a team of researchers headed by Professor Christer Owman and Associate Professor Björn Old of the Wallenberg Neuroscience Center at Lund University, Sweden. They have found a previously unknown receptor on the surface of cells in the heart, liver, and muscles as well as the insulin cells of the pancreas.

A receptor can be likened to an antenna on the surface of a cell that receives chemical signals from its surroundings relays them inside the cell. Many of our most common diseases have to do with disturbances in the function of various receptors.


The Lund scientists’ discovery involves a receptor for fats, or rather a whole family of receptors that are activated by short, medium-length, and long fatty acids. They have dubbed these receptors FFARs (free fatty acid receptors).

The fact that fats can function as signal substances to activate events inside the cell is an entirely new insight. It is also interesting that the newly discovered receptors have a clear connection with diabetes: they are influenced by modern anti-diabetes drugs (so-called glitazones), and they exist on the surface of cells of precisely those organs that are involved in sugar metabolism: the liver, muscles, heart, and pancreas.

“The discovery of FFAR can provide a new explanation for the connection between fat and diabetes,” says Professor Christer Owman. He hopes the research breakthrough will help to clarify the dual role of fats in the body, being both essential to life and potentially damaging.

The research team has also been able to demonstrate that the newly discovered receptors also occur in the brain. In this context there are possible connections to the importance of fats in the development of the brain and of brain disorders like Parkinson’s disease. Christer Owman and his associates hope to be able to study this more closely in the future.

These research results are now being published in the prestigious international journal Biochemical and Biophysical Research Communications. The research team has applied for a patent on the function of these receptors in order to be able to use them to develop drugs for diabetes and obesity.

Ingela Björck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>