Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The role of fat as a signal substance


Fat is not only a much-discussed food substance. Fat can also function as a signal substance in the body and activate a special receptor in the cells of important organs like the heart and liver. This opens opportunities for new ways of explaining the genesis of diabetes, a disease that is strongly associated with obesity.

This new role for fat was discovered by a team of researchers headed by Professor Christer Owman and Associate Professor Björn Old of the Wallenberg Neuroscience Center at Lund University, Sweden. They have found a previously unknown receptor on the surface of cells in the heart, liver, and muscles as well as the insulin cells of the pancreas.

A receptor can be likened to an antenna on the surface of a cell that receives chemical signals from its surroundings relays them inside the cell. Many of our most common diseases have to do with disturbances in the function of various receptors.

The Lund scientists’ discovery involves a receptor for fats, or rather a whole family of receptors that are activated by short, medium-length, and long fatty acids. They have dubbed these receptors FFARs (free fatty acid receptors).

The fact that fats can function as signal substances to activate events inside the cell is an entirely new insight. It is also interesting that the newly discovered receptors have a clear connection with diabetes: they are influenced by modern anti-diabetes drugs (so-called glitazones), and they exist on the surface of cells of precisely those organs that are involved in sugar metabolism: the liver, muscles, heart, and pancreas.

“The discovery of FFAR can provide a new explanation for the connection between fat and diabetes,” says Professor Christer Owman. He hopes the research breakthrough will help to clarify the dual role of fats in the body, being both essential to life and potentially damaging.

The research team has also been able to demonstrate that the newly discovered receptors also occur in the brain. In this context there are possible connections to the importance of fats in the development of the brain and of brain disorders like Parkinson’s disease. Christer Owman and his associates hope to be able to study this more closely in the future.

These research results are now being published in the prestigious international journal Biochemical and Biophysical Research Communications. The research team has applied for a patent on the function of these receptors in order to be able to use them to develop drugs for diabetes and obesity.

Ingela Björck | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>