Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of fat as a signal substance

10.02.2003


Fat is not only a much-discussed food substance. Fat can also function as a signal substance in the body and activate a special receptor in the cells of important organs like the heart and liver. This opens opportunities for new ways of explaining the genesis of diabetes, a disease that is strongly associated with obesity.



This new role for fat was discovered by a team of researchers headed by Professor Christer Owman and Associate Professor Björn Old of the Wallenberg Neuroscience Center at Lund University, Sweden. They have found a previously unknown receptor on the surface of cells in the heart, liver, and muscles as well as the insulin cells of the pancreas.

A receptor can be likened to an antenna on the surface of a cell that receives chemical signals from its surroundings relays them inside the cell. Many of our most common diseases have to do with disturbances in the function of various receptors.


The Lund scientists’ discovery involves a receptor for fats, or rather a whole family of receptors that are activated by short, medium-length, and long fatty acids. They have dubbed these receptors FFARs (free fatty acid receptors).

The fact that fats can function as signal substances to activate events inside the cell is an entirely new insight. It is also interesting that the newly discovered receptors have a clear connection with diabetes: they are influenced by modern anti-diabetes drugs (so-called glitazones), and they exist on the surface of cells of precisely those organs that are involved in sugar metabolism: the liver, muscles, heart, and pancreas.

“The discovery of FFAR can provide a new explanation for the connection between fat and diabetes,” says Professor Christer Owman. He hopes the research breakthrough will help to clarify the dual role of fats in the body, being both essential to life and potentially damaging.

The research team has also been able to demonstrate that the newly discovered receptors also occur in the brain. In this context there are possible connections to the importance of fats in the development of the brain and of brain disorders like Parkinson’s disease. Christer Owman and his associates hope to be able to study this more closely in the future.

These research results are now being published in the prestigious international journal Biochemical and Biophysical Research Communications. The research team has applied for a patent on the function of these receptors in order to be able to use them to develop drugs for diabetes and obesity.

Ingela Björck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht High-Speed Locomotion Neurons Found in the Brainstem
24.10.2017 | Universität Basel

nachricht Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise
24.10.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>