Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene targeting technique extended to human embryonic stem cells

10.02.2003


The technique that helped revolutionize modern biology by making the mouse a crucible of genetic manipulation and a window to human disease has been extended to human embryonic stem (ES) cells.



In a study published today (Feb. 10) in the online editions of the journal Nature Biotechnology, a team of scientists from the University of Wisconsin-Madison reports that it has developed methods for recombining segments of DNA within stem cells.

By bringing to bear the technique, known in scientific parlance as homologous recombination, on DNA in human embryonic stem cells, it is now possible to manipulate any part of the human genome to study gene function and mimic human disease in the laboratory dish.


"Indeed, homologous recombination is one of the essential techniques necessary for human ES cells to fulfill their promise as a basic research tool and has important implications for ES cell-based transplantation and gene therapies," write Wisconsin researchers Thomas P. Zwaka and James A, Thomson, the authors of the new study.

The technique has long been used in the mouse and is best known in recent years for its use to generate mice whose genomes have been modified by eliminating one or more genes. Known as ’knockouts,’ genetically altered mice have become tremendously important for the study of gene function in mammals, and have been used to explore everything from the underlying mechanisms of obesity and other conditions to the pinpointing of genes that underpin many different diseases.

Significant differences between mouse and human embryonic stem cells have, until now, hampered the application of the technique to human ES cells, according to Zwaka, the lead author of the Nature Biotechnology report and a research scientist working in the laboratory of James Thomson. Thomson was the first to isolate and culture human embryonic stem cells nearly five years ago.

"This is a big benefit for the human ES cell field," Zwaka said. "It means we can simulate all kinds of gene-based diseases in the lab - almost all of them."

To demonstrate, the team led by Zwaka and Thomson were able to remove from the human genome the single gene that causes a rare genetic syndrome known as Lesch-Nyhan, a condition that causes an enzyme deficiency and manifests itself in its victims through self-mutilating behavior such as lip and finger biting and head banging.

The study of genes derived from human ES cells, as opposed to those found in mice, is important because, while there are many genetic similarities between mice and humans, they are not identical. There are human genes that differ in clinically significant ways from the corresponding mouse genes, said Zwaka. The gene that codes for Lesch-Nyhan is such a gene, as mice that do not have the enzyme do not exhibit the dramatic symptoms of the disease found in humans whose genes do not make the enzyme.

Another key aspect of the new work is that it may speed the effort to produce cells that can be used therapeutically. Much of the hype and promise of stem cells has centered on their potential to differentiate into all of the 220 kinds of cells found in the human body. If scientists can guide stem cells - which begin life as blank slates - down developmental pathways to become neurons, heart cells, blood cells or any other kind of cell, medicine may have access to an unlimited supply of tissues and cells that can be used to treat cell-based diseases like Parkinson’s, diabetes, or heart disease. Through genetic manipulation, ’marker’ genes can now be inserted into the DNA of stem cells destined for a particular developmental fate. The presence or absence of the gene would help clinicians sort cells for therapy.

"Such ’knock-ins’ will be useful to purify a specific ES-cell derived cell type from a mixed population," Zwaka said. "It’s all about cell lineages. You’ll want dopamine neurons. You’ll want heart cells. We think this technique will be important for getting us to that point."

Genetic manipulation of stem cells destined for therapeutic use may also be a route to avoiding transplant medicine’s biggest pitfall: overcoming the immune system’s reaction to foreign cells or tissues. When tissues or organs are transplanted into humans now, drugs are administered to suppress the immune system and patients often need lifelong treatment to prevent the tissue from being rejected.

Through genetic manipulation, it may be possible to mask cells in such a way that the immune system does not recognize them as foreign tissue.

Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Thomas P. Zwaka | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>