Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene targeting technique extended to human embryonic stem cells

10.02.2003


The technique that helped revolutionize modern biology by making the mouse a crucible of genetic manipulation and a window to human disease has been extended to human embryonic stem (ES) cells.



In a study published today (Feb. 10) in the online editions of the journal Nature Biotechnology, a team of scientists from the University of Wisconsin-Madison reports that it has developed methods for recombining segments of DNA within stem cells.

By bringing to bear the technique, known in scientific parlance as homologous recombination, on DNA in human embryonic stem cells, it is now possible to manipulate any part of the human genome to study gene function and mimic human disease in the laboratory dish.


"Indeed, homologous recombination is one of the essential techniques necessary for human ES cells to fulfill their promise as a basic research tool and has important implications for ES cell-based transplantation and gene therapies," write Wisconsin researchers Thomas P. Zwaka and James A, Thomson, the authors of the new study.

The technique has long been used in the mouse and is best known in recent years for its use to generate mice whose genomes have been modified by eliminating one or more genes. Known as ’knockouts,’ genetically altered mice have become tremendously important for the study of gene function in mammals, and have been used to explore everything from the underlying mechanisms of obesity and other conditions to the pinpointing of genes that underpin many different diseases.

Significant differences between mouse and human embryonic stem cells have, until now, hampered the application of the technique to human ES cells, according to Zwaka, the lead author of the Nature Biotechnology report and a research scientist working in the laboratory of James Thomson. Thomson was the first to isolate and culture human embryonic stem cells nearly five years ago.

"This is a big benefit for the human ES cell field," Zwaka said. "It means we can simulate all kinds of gene-based diseases in the lab - almost all of them."

To demonstrate, the team led by Zwaka and Thomson were able to remove from the human genome the single gene that causes a rare genetic syndrome known as Lesch-Nyhan, a condition that causes an enzyme deficiency and manifests itself in its victims through self-mutilating behavior such as lip and finger biting and head banging.

The study of genes derived from human ES cells, as opposed to those found in mice, is important because, while there are many genetic similarities between mice and humans, they are not identical. There are human genes that differ in clinically significant ways from the corresponding mouse genes, said Zwaka. The gene that codes for Lesch-Nyhan is such a gene, as mice that do not have the enzyme do not exhibit the dramatic symptoms of the disease found in humans whose genes do not make the enzyme.

Another key aspect of the new work is that it may speed the effort to produce cells that can be used therapeutically. Much of the hype and promise of stem cells has centered on their potential to differentiate into all of the 220 kinds of cells found in the human body. If scientists can guide stem cells - which begin life as blank slates - down developmental pathways to become neurons, heart cells, blood cells or any other kind of cell, medicine may have access to an unlimited supply of tissues and cells that can be used to treat cell-based diseases like Parkinson’s, diabetes, or heart disease. Through genetic manipulation, ’marker’ genes can now be inserted into the DNA of stem cells destined for a particular developmental fate. The presence or absence of the gene would help clinicians sort cells for therapy.

"Such ’knock-ins’ will be useful to purify a specific ES-cell derived cell type from a mixed population," Zwaka said. "It’s all about cell lineages. You’ll want dopamine neurons. You’ll want heart cells. We think this technique will be important for getting us to that point."

Genetic manipulation of stem cells destined for therapeutic use may also be a route to avoiding transplant medicine’s biggest pitfall: overcoming the immune system’s reaction to foreign cells or tissues. When tissues or organs are transplanted into humans now, drugs are administered to suppress the immune system and patients often need lifelong treatment to prevent the tissue from being rejected.

Through genetic manipulation, it may be possible to mask cells in such a way that the immune system does not recognize them as foreign tissue.

Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Thomas P. Zwaka | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

nachricht Beer can lift your spirits
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Creative use of noise brings bio-inspired electronic improvement

26.09.2017 | Physics and Astronomy

Filter may be a match for fracking water

26.09.2017 | Power and Electrical Engineering

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>