Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into how the nerve connection machinery remodels itself

10.02.2003


A Duke University Medical Center neurobiologist has identified key mechanisms by which the intricate "protein machines" that govern the strength of connections among neurons build and remodel themselves to adjust those connections.



Such remodeling of the connections, called synapses, is central to the establishment of brain pathways during learning and memory, said the scientists. Also, malfunction of the synaptic machinery might well play a fundamental role in the pathology of neurodegenerative disorders including Parkinson’s and Alzheimer’s diseases.

The findings were reported in the advanced online version of the March 2003 Nature Neuroscience by neurobiologist Michael Ehlers.


Said Bill Thies, Ph.D., vice president, medical and scientific affairs of the Alzheimer’s Association, a sponsor of the research "The discovery of the earliest events in Alzheimer’s disease is very important to understanding the disease. This paper on activity-dependent synaptic organization and disorganization opens an interesting path to the earliest perturbations of Alzheimer’s."

The work was also supported by the National Institutes of Health and other private foundations.

In the Nature Neuroscience paper, Ehlers reported extensive experiments revealing the function of a structure known as the "post-synaptic density" (PSD). The PSD is so named because it is a thickening of the membrane at the connection point between neurons, where one neuron receives biochemical signals called neurotransmitters from its neighbor. Such neurotransmitters are the means by which one neuron triggers the receiving neuron to launch a nerve impulse.

"The post-synaptic density has been known for decades as a distinctive structure readily visible under an electron microscope," said Ehlers, who is an assistant professor of neurobiology. "Also, many of its protein components have been identified -- including neurotransmitter receptors, scaffolding proteins, signaling enzymes and adhesion molecules. So, it was clear that this was an important specialized machine for receiving the chemical signal from the pre-synaptic nerve cell."

Also, said Ehlers, experiments by other researchers had shown that the PSD significantly alters its shape in response to the kind of neural activity that takes place during learning. They had also established that the neurotransmitter receptors in the PSD move in and out of the membrane during such remodeling. "But what past work has not shown is how the many components of this machine behave together," said Ehlers. "Our goal was to take a step back and look at patterns of protein accumulation and loss, rather than examining one molecule at a time -- to provide a molecular fingerprint if you will." The key to achieving such broad insights into PSD remodeling, said Ehlers, was to explore the gain or loss of a multitude of known PSD proteins, and not just one or two. Thus, in his experiments, Ehlers developed a "protein expression profiling" technique to isolate and measure the levels of some 30 proteins in the PSDs of cultured rat embryo neurons. This mass analysis revealed a distinct pattern of protein turnover, he said.

"We found that a significant percentage of the major PSD protein components moved up and down with neural activity," he said. "And surprisingly, they didn’t behave independently, but moved as groups or ensembles, with a whole set going up or down in response to activity. Even more notable was that we saw the exact mirror image pattern in behavior when neural activity was blocked." According to Ehlers, such a discovery could have a profound impact on scientists’ ability to understand the structure and function of the intricately complex protein machine that is the PSD.

"These findings allow us to begin making testable predictions about the functional networks of proteins in these synaptic complexes," he said. "For example, we believe that there are probably some master organizers in the PSD that recruit or organize large subsets of these proteins. Now, we can search for those master molecules." Further, "by providing a molecular fingerprint of the functional state of the synapse, we can now begin to compare patterns as the brain develops, ages, and learns, as well as in disease states such as Alzheimer’s disease, or even across individuals with different experiences and environmental exposures."

Another surprise, Ehlers found, was the mechanism behind the turnover of such proteins. In his experiments, Ehlers explored whether the cell’s protein "garbage collection" system might be involved in the turnover. In this system, proteins targeted for destruction are tagged with a molecule called ubiquitin and transported to a shredding complex called the proteasome for destruction. Ehlers’ studies revealed that this system was required for normal turnover of PSD proteins. Ehlers also showed that the ubiquitin-proteasome system affected specific metabolic pathways in the neurons that are known to be involved in the changes in synaptic connections associated with learning and memory. "The prevailing model for long-term plastic change at synapses has been that genes are switched on to make new proteins and incorporate them into the synapse," said Ehlers. "Much, much less appreciated has been the fact that proteins must also be removed from the structure. And what we found was that this highly regulated removal is a key part of the remodeling of the PSD."

Also startling, said Ehlers, was the high base level of remodeling of the PSD. "I found that neurons in these cultures replace the content of this signaling machine multiple times a day," said Ehlers. "And if this recapitulates what’s going in the mammalian brain, this means that synapses are completely turning over all of their constituents multiple times a day – a stunning finding."

Neuroscientists have long been intrigued in how the brain changes with learning and experience, a phenomenon called plasticity. Yet, as Ehlers points out, "perhaps we need to think more closely about how connections in the brain remain stable in the face of such incredible ongoing turnover."

"In fact, when I was doing these experiments, I anticipated a turnover on the order of days, so I took my first time measurement at about a day and found no protein label left in the sample. I thought the experiment had failed until I decided to do measurements at earlier time points."

According to Ehlers, the new insights into the PSD his studies allow could have important implications for understanding neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases.

"Many of these diseases have as their hallmark pathology abnormal deposits in the brain, many of which show high levels of ubiquitin," he said. "For example, there are rare familial versions of Parkinson’s that arises from mutations in genes that regulate the attachment of ubiquitin to proteins. So, these findings might give new insights into how such mutations affect the brain. Such findings might also shed light in the subtle pathological changes in synaptic connections that eventually give rise to Alzheimer’s disease," he said.

"There is an increasing appreciation of the idea that before the neurological damage from Alzheimer’s disease becomes apparent, there may be subtle synaptic defects that cause only a mild cognitive decline," said Ehlers. "This study showing the central relationship between the ubiquitin system and synaptic organization gives us a research pathway to trace the possible origin of these subtle defects. And it is my hope that such basic insights will lead to therapies to remedy the defects early."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>