Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taste Receptor Cells Share Common Pathway

07.02.2003


Although sweet, bitter and umami (monosodium glutamate) tastes are different, researchers are finding that information about each of these tastes is transmitted from the various taste receptors via a common intracellular signaling pathway.

The identification of a common pathway runs counter to widespread belief among some researchers in the taste field who have long held the view that the different tastes require distinct machinery within the cell to transduce their signals to the brain, which is responsible for processing taste perceptions.

The discovery also opens the way for more precise genetic manipulation of taste sensations in laboratory animals to discover how different tastes are perceived in the brain, according to Howard Hughes Medical Institute investigator Charles Zuker, who is at the University of California, San Diego.



Zuker, Nicholas Ryba of the National Institute of Dental and Craniofacial Research of the National Institutes of Health and their colleagues reported their findings in the February 7, 2003, issue of the journal Cell.

The research team reported that two enzymes found in the same signaling pathway in the cell were necessary for mice to process sweet, bitter and umami tastes. Umami is the taste of monosodium glutamate.

According to Zuker, the effort to identify common components of the cell machinery involved in taste was driven by two goals. “One, is that we wanted to be able to manipulate the function of the various taste modalities, to understand taste processing,” he said. “We might normally seek to knock out the receptors themselves, which is feasible with sweet receptors, since there are only a couple. But there are thirty bitter-taste receptors, which would be practically impossible to eliminate.

“Our other goal was to make sense of the extraordinary complexity in the scientific understanding of the signaling pathways involved in taste reception. We believed that it didn’t make sense for there to be multiple pathways, since all the taste receptors belonged to only a couple of families (of proteins).”

When the researchers screened a range of taste receptor cells for commonly expressed genes, they found two, called TRPM5 and PLCâ2, to be widely expressed in taste cells. To demonstrate that the two enzymes — which were known to be part of the same signaling pathway — were necessary for taste signaling, the researchers engineered and examined knockout mice that lacked either of the two enzymes. These mice, they found in both electrophysiological and behavioral tests, lacked the ability to taste sweet, bitter and umami compounds. Also importantly, noted Zuker, the knockout mice retained the ability to respond to salty and sour tastes.

“This told us that clearly salty and sour tastes operated through independent mechanisms,” said Zuker. “But it also told us that you don’t need a functioning sweet, bitter or umami system for completely normal salty and sour tastes.” In another key experiment in the series, the researchers generated mice in which they restored the PLCâ2 gene in only bitter taste receptors in the PLCâ2-knockout mice. While these mice still could not taste sweet or umami, their bitter-tasting ability was restored.

“This was a particularly important experiment that sought to investigate another hypothesis in the taste receptor field — that taste receptor cells are broadly tuned to all three tastes,” said Zuker. “However, we reasoned that this didn’t make sense, since we had found a complete non-overlap in the expression of these different receptors in taste cells. Furthermore, sweet and bitter play very different roles in triggering behavior. The role of sweet is to indicate a caloric food source, and bitter functions as a highly sensitive alarm sensor for dangerous chemicals., “So this experiment in selective rescue of these animals quite clearly showed that restoring one modality did not restore the others, demonstrating that taste receptor cells are not broadly tuned across all modalities,” said Zuker.

The discovery of the common signaling molecules and the ability to selectively knock out or rescue taste modalities provide an invaluable tool for the next steps in understanding taste.

“We believe these findings will help us understand how tastes are encoded in the tongue and decoded by the brain,” he said. “We are now beginning to track the connectivity pattern from tongue to brain. Ultimately, we hope to develop a method by which we can visualize brain function in vivo during the animal’s tasting response.”

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/zuker4.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>