Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taste Receptor Cells Share Common Pathway

07.02.2003


Although sweet, bitter and umami (monosodium glutamate) tastes are different, researchers are finding that information about each of these tastes is transmitted from the various taste receptors via a common intracellular signaling pathway.

The identification of a common pathway runs counter to widespread belief among some researchers in the taste field who have long held the view that the different tastes require distinct machinery within the cell to transduce their signals to the brain, which is responsible for processing taste perceptions.

The discovery also opens the way for more precise genetic manipulation of taste sensations in laboratory animals to discover how different tastes are perceived in the brain, according to Howard Hughes Medical Institute investigator Charles Zuker, who is at the University of California, San Diego.



Zuker, Nicholas Ryba of the National Institute of Dental and Craniofacial Research of the National Institutes of Health and their colleagues reported their findings in the February 7, 2003, issue of the journal Cell.

The research team reported that two enzymes found in the same signaling pathway in the cell were necessary for mice to process sweet, bitter and umami tastes. Umami is the taste of monosodium glutamate.

According to Zuker, the effort to identify common components of the cell machinery involved in taste was driven by two goals. “One, is that we wanted to be able to manipulate the function of the various taste modalities, to understand taste processing,” he said. “We might normally seek to knock out the receptors themselves, which is feasible with sweet receptors, since there are only a couple. But there are thirty bitter-taste receptors, which would be practically impossible to eliminate.

“Our other goal was to make sense of the extraordinary complexity in the scientific understanding of the signaling pathways involved in taste reception. We believed that it didn’t make sense for there to be multiple pathways, since all the taste receptors belonged to only a couple of families (of proteins).”

When the researchers screened a range of taste receptor cells for commonly expressed genes, they found two, called TRPM5 and PLCâ2, to be widely expressed in taste cells. To demonstrate that the two enzymes — which were known to be part of the same signaling pathway — were necessary for taste signaling, the researchers engineered and examined knockout mice that lacked either of the two enzymes. These mice, they found in both electrophysiological and behavioral tests, lacked the ability to taste sweet, bitter and umami compounds. Also importantly, noted Zuker, the knockout mice retained the ability to respond to salty and sour tastes.

“This told us that clearly salty and sour tastes operated through independent mechanisms,” said Zuker. “But it also told us that you don’t need a functioning sweet, bitter or umami system for completely normal salty and sour tastes.” In another key experiment in the series, the researchers generated mice in which they restored the PLCâ2 gene in only bitter taste receptors in the PLCâ2-knockout mice. While these mice still could not taste sweet or umami, their bitter-tasting ability was restored.

“This was a particularly important experiment that sought to investigate another hypothesis in the taste receptor field — that taste receptor cells are broadly tuned to all three tastes,” said Zuker. “However, we reasoned that this didn’t make sense, since we had found a complete non-overlap in the expression of these different receptors in taste cells. Furthermore, sweet and bitter play very different roles in triggering behavior. The role of sweet is to indicate a caloric food source, and bitter functions as a highly sensitive alarm sensor for dangerous chemicals., “So this experiment in selective rescue of these animals quite clearly showed that restoring one modality did not restore the others, demonstrating that taste receptor cells are not broadly tuned across all modalities,” said Zuker.

The discovery of the common signaling molecules and the ability to selectively knock out or rescue taste modalities provide an invaluable tool for the next steps in understanding taste.

“We believe these findings will help us understand how tastes are encoded in the tongue and decoded by the brain,” he said. “We are now beginning to track the connectivity pattern from tongue to brain. Ultimately, we hope to develop a method by which we can visualize brain function in vivo during the animal’s tasting response.”

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/zuker4.html

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>