Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Taste Receptor Cells Share Common Pathway


Although sweet, bitter and umami (monosodium glutamate) tastes are different, researchers are finding that information about each of these tastes is transmitted from the various taste receptors via a common intracellular signaling pathway.

The identification of a common pathway runs counter to widespread belief among some researchers in the taste field who have long held the view that the different tastes require distinct machinery within the cell to transduce their signals to the brain, which is responsible for processing taste perceptions.

The discovery also opens the way for more precise genetic manipulation of taste sensations in laboratory animals to discover how different tastes are perceived in the brain, according to Howard Hughes Medical Institute investigator Charles Zuker, who is at the University of California, San Diego.

Zuker, Nicholas Ryba of the National Institute of Dental and Craniofacial Research of the National Institutes of Health and their colleagues reported their findings in the February 7, 2003, issue of the journal Cell.

The research team reported that two enzymes found in the same signaling pathway in the cell were necessary for mice to process sweet, bitter and umami tastes. Umami is the taste of monosodium glutamate.

According to Zuker, the effort to identify common components of the cell machinery involved in taste was driven by two goals. “One, is that we wanted to be able to manipulate the function of the various taste modalities, to understand taste processing,” he said. “We might normally seek to knock out the receptors themselves, which is feasible with sweet receptors, since there are only a couple. But there are thirty bitter-taste receptors, which would be practically impossible to eliminate.

“Our other goal was to make sense of the extraordinary complexity in the scientific understanding of the signaling pathways involved in taste reception. We believed that it didn’t make sense for there to be multiple pathways, since all the taste receptors belonged to only a couple of families (of proteins).”

When the researchers screened a range of taste receptor cells for commonly expressed genes, they found two, called TRPM5 and PLCâ2, to be widely expressed in taste cells. To demonstrate that the two enzymes — which were known to be part of the same signaling pathway — were necessary for taste signaling, the researchers engineered and examined knockout mice that lacked either of the two enzymes. These mice, they found in both electrophysiological and behavioral tests, lacked the ability to taste sweet, bitter and umami compounds. Also importantly, noted Zuker, the knockout mice retained the ability to respond to salty and sour tastes.

“This told us that clearly salty and sour tastes operated through independent mechanisms,” said Zuker. “But it also told us that you don’t need a functioning sweet, bitter or umami system for completely normal salty and sour tastes.” In another key experiment in the series, the researchers generated mice in which they restored the PLCâ2 gene in only bitter taste receptors in the PLCâ2-knockout mice. While these mice still could not taste sweet or umami, their bitter-tasting ability was restored.

“This was a particularly important experiment that sought to investigate another hypothesis in the taste receptor field — that taste receptor cells are broadly tuned to all three tastes,” said Zuker. “However, we reasoned that this didn’t make sense, since we had found a complete non-overlap in the expression of these different receptors in taste cells. Furthermore, sweet and bitter play very different roles in triggering behavior. The role of sweet is to indicate a caloric food source, and bitter functions as a highly sensitive alarm sensor for dangerous chemicals., “So this experiment in selective rescue of these animals quite clearly showed that restoring one modality did not restore the others, demonstrating that taste receptor cells are not broadly tuned across all modalities,” said Zuker.

The discovery of the common signaling molecules and the ability to selectively knock out or rescue taste modalities provide an invaluable tool for the next steps in understanding taste.

“We believe these findings will help us understand how tastes are encoded in the tongue and decoded by the brain,” he said. “We are now beginning to track the connectivity pattern from tongue to brain. Ultimately, we hope to develop a method by which we can visualize brain function in vivo during the animal’s tasting response.”

Jim Keeley | Howard Hughes Medical Institute
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>