Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect Antibiotics - Resistance is Futile!

07.02.2003


Insect Antibiotic, Cecropin A, Bypasses Outer Defenses to Kill Bacteria From The Inside

For antibiotics, the best way to beat bacterial defenses may be to avoid them altogether. Researchers at University of Pennsylvania School of Medicine have discovered that Cecropin A, a member of a family of antibiotic proteins produced by insects, may kill bacteria and avoid resistance by entering bacterial cells and taking control of their genetic machinery.

While most antibiotics kill bacteria by attacking critical enzyme systems, Cecropin A somehow slips inside the bacteria and turns specific genes on and off. The findings challenge conventional thinking on how these antibiotics function, and may aid in turning antimicrobial peptides like Cecropin A into therapeutic agents.



"For decades, researchers have studied Cecropin A and focused on its obvious effects against bacterial cell walls and membranes. These antibiotics certainly do disrupt outer structures of the bacterial cell, but there’s much more to the story," said Paul H. Axelsen, M.D., an associate professor in the Department of Pharmacology and Division of Infectious Diseases at Penn. "Before the bacterial cell dies, Cecropin A enters the cell and alters the way its genes are regulated. It’s like sneaking over the castle wall and opening the gates from the inside. We need to understand this mechanism of action because it may explain why bacteria are unable to develop resistance to this family of antibiotics."

Axelsen’s findings were described in the January issue of the Antimicrobial Agents and Chemotherapy, a publication of the American Society for Microbiology. In their study, Axelsen and his colleagues treated E. coli with small doses of Cecropin A - not enough to kill the bacteria, but enough to see what genes are affected when bacteria are exposed to the antibiotic. They found that transcript levels for 26 genes are affected, 11 of which code for proteins whose functions are unknown. Even more surprising for the researchers, the genes are not the same as the ones affected when bacteria experience nutritional, thermal, osmotic, or oxidative stress.

"It is a whole different mechanism by which to kill bacteria, and one that we still have yet to completely figure out," said Axelsen. "How Cecropin A turns these genes on and, indeed, how it gets inside E. coli in the first place, is still something of a mystery."

Despite years of research, there remains much to know about the antibiotics produced by insects. Cecropin A was discovered in the Cecropia moth, also known as the silkworm moth, the largest moth in North America. Since insects do not have an immune system as humans do, they rely on polypeptide antibiotics like Cecropin A to fight off infections. These proteins are highly selective - they readily kill bacteria, but are harmless to human and other animal cells. Moreover, bacteria that are susceptible initially stay susceptible - researchers have not seen bacteria develop resistance to their action. For this reason, these antibiotics offer a potentially invaluable model for new therapeutic agents.

"We’re engaged in an arms race against infectious bacteria. With each new antibiotic, bacteria have found a way to evolve resistance - primarily by slightly altering cellular enzymes," said Axelsen. "Bacteria may be unable to alter their genetic machinery, and this may explain why strains of bacteria resistant to Cecropin A do not arise."

Funding for this research was supported by grants from the National Institutes of Health and the American Heart Association, and from Affymetrix’s generous donation of E. coli GeneChip Microarrays.

Greg Lester | University of Pennsylvania Medic
Further information:
http://health.upenn.edu/News/News_Releases/feb03/Insects.html

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>