Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Sticky’ DNA crystals promise new way to process information

07.02.2003


Imagine information stored on something only a hundredth the size of the next generation computer chip--and made from nature’s own storage molecule, DNA. A team led by Richard Kiehl, a professor of electrical engineering at the University of Minnesota, has used the selective "stickiness" of DNA to construct a scaffolding for closely spaced nanoparticles that could exchange information on a scale of only 10 angstroms (an angstrom is one 10-billionth of a meter). The technique allows the assembly of components on a much smaller scale and with much greater precision than is possible with current manufacturing methods, Kiehl said. The work is published in a recent issue of the Journal of Nanoparticle Research.



"In a standard silicon-based chip, information processing is limited by the distance between units that store and share information," said Kiehl. "With these DNA crystals, we can lay out devices closely so that the interconnects are very short. If nanoparticles are spaced even 20 angstroms apart on such a DNA crystal scaffolding, a chip could hold 10 trillion bits per square centimeter--that’s 100 times as much information as in the 64 Gigabit D-RAM memory projected for 2010. By showing how to assemble nanoscale components in periodic arrangements, we’ve taken the first step toward this goal."

Eventually, a chip made from DNA crystals and nanoparticles could be valuable in such applications as real-time image processing, Kiehl said. Nanocomponents could be clustered in pixel-like "cells" that would process information internally and also by "talking" to other cells. The result could be improved noise filtering and detection of edges or motion. Someday, the technology may even help computers identify images with something approaching the speed of the human eye and brain, said Kiehl.


The team devised a DNA scaffolding for arrays of nanoparticles of gold, but the scaffolding could also hold arrays of carbon nanotubes or other molecules. Information could be stored as an electrical charge on certain nanoparticles; the presence or absence of charge would constitute one bit of information. Alternatively, nanoparticles could be magnetic, and the magnetic states would be read as information. Because DNA strands contain four chemical bases spaced every 3.4 angstroms, information might be stored on that small a scale, Kiehl said.

To manufacture the scaffolding, the researchers took advantage of the fact that each base spontaneously pairs up with, or "sticks to," one of the other bases to form the famous DNA double helix. The team synthesized four different two-dimensional "tiles" of DNA, each tile having an extension that sticks to the extension on another tile. Like self-assembling jigsaw pieces, the tiles joined themselves into a flat crystal with a repeating pattern. One tile had a stretch of DNA that extended above the plane of the tile; to this the researchers anchored a spherical, 55-atom nanoparticle of gold. Under an electron microscope, the gold nanoparticles appeared as regular lines of bright spots. A regular pattern of nanoparticles is important in arranging them to process or store information.

"Gold is a metal, and a matrix between metals and organic molecules like DNA is very hard to make," Kiehl said. "If we can make DNA scaffolding for gold, we think we can do it for carbon nanotubes and other organic molecules. The technique is well suited to laying out locally interconnected circuitry, which is of great interest for circumventing the interconnect bottleneck-- the well-known problem where wires, rather than devices (transistors), limit computing speed."

Other scientists have used DNA as nanoparticle "glue," but such arrangements are prone to structural flaws, which limits their usefulness, said Kiehl. In contrast, the virtually perfect arrangement of molecules within a DNA crystal allows precise control over the arrangement of the particles.

Among the next steps for the researchers is to demonstrate that nanoparticles bound to the DNA crystals can function electrically.

"We’re working on instrumentation to do electrical characterization of gold nanoparticles and other nanocomponents on DNA," said Kiehl. "We hope to show, for example, that DNA doesn’t interfere with the electrical functioning of the nanocomponents."

The work was supported by the National Science Foundation.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>