Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Sticky’ DNA crystals promise new way to process information

07.02.2003


Imagine information stored on something only a hundredth the size of the next generation computer chip--and made from nature’s own storage molecule, DNA. A team led by Richard Kiehl, a professor of electrical engineering at the University of Minnesota, has used the selective "stickiness" of DNA to construct a scaffolding for closely spaced nanoparticles that could exchange information on a scale of only 10 angstroms (an angstrom is one 10-billionth of a meter). The technique allows the assembly of components on a much smaller scale and with much greater precision than is possible with current manufacturing methods, Kiehl said. The work is published in a recent issue of the Journal of Nanoparticle Research.



"In a standard silicon-based chip, information processing is limited by the distance between units that store and share information," said Kiehl. "With these DNA crystals, we can lay out devices closely so that the interconnects are very short. If nanoparticles are spaced even 20 angstroms apart on such a DNA crystal scaffolding, a chip could hold 10 trillion bits per square centimeter--that’s 100 times as much information as in the 64 Gigabit D-RAM memory projected for 2010. By showing how to assemble nanoscale components in periodic arrangements, we’ve taken the first step toward this goal."

Eventually, a chip made from DNA crystals and nanoparticles could be valuable in such applications as real-time image processing, Kiehl said. Nanocomponents could be clustered in pixel-like "cells" that would process information internally and also by "talking" to other cells. The result could be improved noise filtering and detection of edges or motion. Someday, the technology may even help computers identify images with something approaching the speed of the human eye and brain, said Kiehl.


The team devised a DNA scaffolding for arrays of nanoparticles of gold, but the scaffolding could also hold arrays of carbon nanotubes or other molecules. Information could be stored as an electrical charge on certain nanoparticles; the presence or absence of charge would constitute one bit of information. Alternatively, nanoparticles could be magnetic, and the magnetic states would be read as information. Because DNA strands contain four chemical bases spaced every 3.4 angstroms, information might be stored on that small a scale, Kiehl said.

To manufacture the scaffolding, the researchers took advantage of the fact that each base spontaneously pairs up with, or "sticks to," one of the other bases to form the famous DNA double helix. The team synthesized four different two-dimensional "tiles" of DNA, each tile having an extension that sticks to the extension on another tile. Like self-assembling jigsaw pieces, the tiles joined themselves into a flat crystal with a repeating pattern. One tile had a stretch of DNA that extended above the plane of the tile; to this the researchers anchored a spherical, 55-atom nanoparticle of gold. Under an electron microscope, the gold nanoparticles appeared as regular lines of bright spots. A regular pattern of nanoparticles is important in arranging them to process or store information.

"Gold is a metal, and a matrix between metals and organic molecules like DNA is very hard to make," Kiehl said. "If we can make DNA scaffolding for gold, we think we can do it for carbon nanotubes and other organic molecules. The technique is well suited to laying out locally interconnected circuitry, which is of great interest for circumventing the interconnect bottleneck-- the well-known problem where wires, rather than devices (transistors), limit computing speed."

Other scientists have used DNA as nanoparticle "glue," but such arrangements are prone to structural flaws, which limits their usefulness, said Kiehl. In contrast, the virtually perfect arrangement of molecules within a DNA crystal allows precise control over the arrangement of the particles.

Among the next steps for the researchers is to demonstrate that nanoparticles bound to the DNA crystals can function electrically.

"We’re working on instrumentation to do electrical characterization of gold nanoparticles and other nanocomponents on DNA," said Kiehl. "We hope to show, for example, that DNA doesn’t interfere with the electrical functioning of the nanocomponents."

The work was supported by the National Science Foundation.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>