Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Sticky’ DNA crystals promise new way to process information

07.02.2003


Imagine information stored on something only a hundredth the size of the next generation computer chip--and made from nature’s own storage molecule, DNA. A team led by Richard Kiehl, a professor of electrical engineering at the University of Minnesota, has used the selective "stickiness" of DNA to construct a scaffolding for closely spaced nanoparticles that could exchange information on a scale of only 10 angstroms (an angstrom is one 10-billionth of a meter). The technique allows the assembly of components on a much smaller scale and with much greater precision than is possible with current manufacturing methods, Kiehl said. The work is published in a recent issue of the Journal of Nanoparticle Research.



"In a standard silicon-based chip, information processing is limited by the distance between units that store and share information," said Kiehl. "With these DNA crystals, we can lay out devices closely so that the interconnects are very short. If nanoparticles are spaced even 20 angstroms apart on such a DNA crystal scaffolding, a chip could hold 10 trillion bits per square centimeter--that’s 100 times as much information as in the 64 Gigabit D-RAM memory projected for 2010. By showing how to assemble nanoscale components in periodic arrangements, we’ve taken the first step toward this goal."

Eventually, a chip made from DNA crystals and nanoparticles could be valuable in such applications as real-time image processing, Kiehl said. Nanocomponents could be clustered in pixel-like "cells" that would process information internally and also by "talking" to other cells. The result could be improved noise filtering and detection of edges or motion. Someday, the technology may even help computers identify images with something approaching the speed of the human eye and brain, said Kiehl.


The team devised a DNA scaffolding for arrays of nanoparticles of gold, but the scaffolding could also hold arrays of carbon nanotubes or other molecules. Information could be stored as an electrical charge on certain nanoparticles; the presence or absence of charge would constitute one bit of information. Alternatively, nanoparticles could be magnetic, and the magnetic states would be read as information. Because DNA strands contain four chemical bases spaced every 3.4 angstroms, information might be stored on that small a scale, Kiehl said.

To manufacture the scaffolding, the researchers took advantage of the fact that each base spontaneously pairs up with, or "sticks to," one of the other bases to form the famous DNA double helix. The team synthesized four different two-dimensional "tiles" of DNA, each tile having an extension that sticks to the extension on another tile. Like self-assembling jigsaw pieces, the tiles joined themselves into a flat crystal with a repeating pattern. One tile had a stretch of DNA that extended above the plane of the tile; to this the researchers anchored a spherical, 55-atom nanoparticle of gold. Under an electron microscope, the gold nanoparticles appeared as regular lines of bright spots. A regular pattern of nanoparticles is important in arranging them to process or store information.

"Gold is a metal, and a matrix between metals and organic molecules like DNA is very hard to make," Kiehl said. "If we can make DNA scaffolding for gold, we think we can do it for carbon nanotubes and other organic molecules. The technique is well suited to laying out locally interconnected circuitry, which is of great interest for circumventing the interconnect bottleneck-- the well-known problem where wires, rather than devices (transistors), limit computing speed."

Other scientists have used DNA as nanoparticle "glue," but such arrangements are prone to structural flaws, which limits their usefulness, said Kiehl. In contrast, the virtually perfect arrangement of molecules within a DNA crystal allows precise control over the arrangement of the particles.

Among the next steps for the researchers is to demonstrate that nanoparticles bound to the DNA crystals can function electrically.

"We’re working on instrumentation to do electrical characterization of gold nanoparticles and other nanocomponents on DNA," said Kiehl. "We hope to show, for example, that DNA doesn’t interfere with the electrical functioning of the nanocomponents."

The work was supported by the National Science Foundation.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>