Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Identify Gene Pathway Causing Pulmonary Hypertension

06.02.2003


Researchers at the University of California, San Diego (UCSD) School of Medicine have identified an over-active gene and the molecular events it triggers to cause acquired cases of pulmonary hypertension, a form of high blood pressure in the lungs that kills about one percent of the population each year.



The findings, published in the February 6, 2003 issue of the New England Journal of Medicine, offer the first specific molecular targets for development of new therapies.

"Although a small subset of patients benefit from surgery to remove blood clots from the lungs, currently the only treatment for most types of pulmonary hypertension is lung transplantation," said the study’s senior author Patricia Thistlethwaite, M.D., Ph.D., an assistant professor in the UCSD Division of Cardiothoracic Surgery.


The researchers found that a gene called angiopoietin-1, which is normally involved in smooth-muscle growth in newly developing embryonic blood vessels, somehow gets inappropriately turned on in adulthood. As angiopoietin-1 aberrantly over-expresses itself, it initiates a molecular chain of events that causes muscle cell proliferation within the lining of the lung’s blood vessels. As the vessel wall thickness grows, the small lung arteries become progressively narrowed and blocked.

Almost all patients with pulmonary hypertension acquire the disease from diverse causes such as congenital heart defects, autoimmune disease, left-sided heart failure, blood clots in the lungs, drug interactions or vascular diseases. A handful of patients inherit a rare form of the disease from a mutation in a gene called bone morphogenetic protein receptor type2 (BMPR2).

"We wondered whether a common molecular mechanism underlies all the different causes of pulmonary hypertension as well as the inherited form," Thistlethwaite said.

The investigators reasoned that since angiopoietin-1 was involved in embryonic smooth-muscle development, an aberrant turn-on of this gene might cause the over-growth of muscle tissue in adults. During an 18 month period, the team obtained lung biopsies from 42 pulmonary hypertension patients who had acquired pulmonary hypertension from a variety of causes. For comparative purposes, they also obtained biopsies from 19 individuals without pulmonary hypertension, who were undergoing lung surgery.

Using sophisticated laboratory tests on the lung tissue, the scientists found that angiopoietin-1 attached itself to a receptor (or docking protein) called TIE2, which is only located in the lining of blood vessels. In turn, the angiopoietin-1/TIE2 duo caused the down-regulation, or work slow-down, of another gene called bone morphogenetic protein receptor type1 (BMPR1). The result was the muscle build-up characteristic of pulmonary hypertension.

"Researchers have known for years that BMPR1 and BMPR2 work together on the cell surface to stimulate intracellular signaling," said Thistlethwaite. "This means that our findings show a link between the inherited form of pulmonary hypertension, caused by a BMPR2 mutation, and the non-familial, acquired form, caused by the angiopoietin-1, TIE2, BMPR1 molecular pathway."

Currently, the Thistlethwaite team is working on potential inhibitors of angiopoitin-1, to see if they can stop pulmonary hypertension in rodent models.

The study was funded by the Charles B. Wang Foundation and grants from the National Institutes of Health. Additional authors of the paper were Lingling Du, M.D.; Christopher C. Sullivan, M.S.; Danny Chu, M.D.; Augustine J. Cho, B.A.; Masakuni Kido, M.D., and Stuart W. Jamieson, M.D., FRCS, UCSD Division of Cardiothoracic Surgery; Paul L. Wolf, M.D., UCSD and the San Diego VA Healthcare System; Jason X.-J. Yuan, M.D., Ph.D., UCSD Pulmonary and Critical Care Medicine; and Renna Duetsch, Ph.D., UCSD Biostatistics.


News media contact:
Sue Pondrom
619-543-6163
spondrom@ucsd.edu

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu/news/
http://health.ucsd.edu/news/2003/02_05_Thistle.html
http://www.ucsd.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>