Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fragile X syndrome protein as RNA distribution hub

06.02.2003


New technique tracks RNAs associated with the protein responsible for Fragile X



The process of turning genes into protein makes the insides of cells terribly crowded and complicated places. Signals tell machinery to transcribe the DNA of genes into messenger RNA (mRNA) whose translation into protein has to be coordinated with everything else that is happening within the cell. Fortunately, there are RNA binding proteins to organize mRNAs. These proteins are so critical that the loss of one particular RNA binding protein, FMRP, leads to Fragile X syndrome, the most common inherited forms of mental retardation.

Researchers based at the University of Pennsylvania School of Medicine invented a technique called Antibody Positioned RNA Amplification (APRA) to determine the identity of RNA molecules associated with RNA binding proteins. Their findings on FMRP, presented in the February 6th issue of the journal Neuron, further define the complex basis of Fragile X syndrome.


Fragile X syndrome is the most common inherited cause of mental retardation in both men and women. The disorder causes mental abnormalities that range from slight learning disabilities to severe mental retardation. The syndrome is caused by a mutation in what has been termed the Fragile X mental retardation-1 (Fmr1) gene, which encodes FMRP, the Fragile X mental retardation protein.

"RNA-binding proteins regulate all aspects of RNA synthesis, such as mRNA transcription, splicing and editing, as well as translation of mRNA into protein," said James Eberwine, PhD, professor in Penn’s Department of Pharmacology. "The mRNAs held by FMRP encode for proteins that assist in transmitting signals within the brain. FMRP provides cellular mRNA traffic control, and moves selected mRNAs to sites where they can be translated. How FMRP knows where to move these mRNAs and how these mRNAs are released from FMRP is unclear at present."

To study how RNA binding proteins such as FMRP function, Eberwine and his colleagues developed a technique to identify specific mRNAs associated with a particular binding protein. At its basis, APRA enables researchers to analyze an RNA binding protein’s cargo on a genome-wide basis.

In practice, APRA works a bit like a homing beacon attached to a photocopier: Eberwine connected an antibody that specifically binds to FMRP to a DNA molecule that can bind to the RNA near the FMRP protein. In the presence of enzymes, the DNA molecule helps copy these RNAs into cDNA (a term for DNA made from RNA).

After it is synthesized, the cDNA is amplified into hundreds of thousands of RNA molecules by an amplification procedure also developed in the Eberwine lab a few years ago. These amplified RNA molecules can be screened against a microarray to identify their corresponding genes. In this bridging of genomics (the study of the genome) and proteomics (global analysis of proteins), the specificity of the antibody’s attraction to FMRP induces the specificity of the RNA analysis. Given the nature of Fragile X syndrome – and the fact that FMRP is found only in the tissues of the central nervous system – the researchers were encouraged to find that among the FMRP’s cargo are mRNAs encoding proteins involved in transmitting signals between neurons and in neuron maturation.

As a research tool, the researchers believe that APRA analysis has great potential for researchers who want to target specific RNA binding proteins for analysis. Given its specificity, ARPA can track down RNA binding proteins that are only found in certain tissues and examine those proteins under varying physiological conditions or disease states.

"In that sense, APRA could mean to RNA studies as much as DNA and RNA amplification techniques have meant to studying the genome," said Eberwine. "It is also part of the growing frontier of molecular biology – somewhere between genomics and proteomics is the interplay of RNA with RNA-binding proteins."

Researchers also involved in these findings include: lead author Kevin Miyashiro of Penn’s Department of Pharmacology; Andrea Beckel-Mitchener, T. Patrick Purk, Ivan Jeanne Wieler, Willam T. Greenough, of the Beckman Institute at the University of Illinois; Lei Liu of the W.M. Keck Center for Comparative and Functional Genomics at the University of Illinois; Salvatore Carbonetto of the Centre for Neuroscience Research at McGill University; and Kevin G. Becker and Tanya Barret of the DNA Array Unit of the National Institute on Aging.


###
This research was funded through grants from the National Institute on Aging and the National Institute of Mental Health.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>