Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover the gene that causes the smell of the earth and leads camels to water

05.02.2003


Scientists at the John Innes Centre (JIC), Norwich have discovered the gene that gives freshly turned soil its distinctive smell. A smell, it is believed, that enables camels to find water in the desert. The ‘earthy’ smell is caused by geosmin, a chemical produced by a common bacterium, Streptomyces coelicolor, that is found in most soils. The discovery of the gene that produces geosmin is reported in the International science journal the Proceedings of the National Academy of Sciences of the USA.



“The smell of Streptomyces may be a matter of life and death to the camel” said Professor Keith Chater (Head of Molecular Microbiology at JIC), “but these bacteria are also of enormous importance to humans as they are a major source of the antibiotics we use in medicine. This discovery was made using a technique that will allow us to better understand how Streptomyces makes the chemicals that are so important to us.”

The JIC researchers tracked down the source of Streptomyces’ smell to one gene out of the 8,000 that make up its complete genome. The Norwich scientists have been studying Streptomyces for years because of its importance as a natural chemical factory that makes a large number of useful medicines, it produces anti-cancer agents and immuno-suppressants as well as antibiotics. A year ago the JIC team, working with colleagues at the Sanger Centre near Cambridge, announced they had completely sequenced all 8,000 genes of Streptomyces. Their next challenge was to sort out what each of these 8,000 genes did. Fortunately, they had just invented a method to selectively switch off individual genes and so they began to use this to study the genes of Streptomyces. Among the 8,000 genes were a couple that the scientists thought might be responsible for making geosmin, so they tried switching them off to see what happened. Sure enough, switching off one of the genes eliminated the smell, and when they checked they found that the bacteria no longer made geosmin.


“Our discovery may seem a bit trivial but it demonstrates that we can now unravel how all the genes in this important bacteria work ” said Professor Chater . He concluded, “The discovery is not as useless as it first seems. Gardeners may delight in the smell of geosmin in freshly turned soil but the smell is less welcome when it is produced by pharmaceutical factories that are growing Streptomyces to produce antibiotics. By shutting down the bacteria’s ability to produce geosmin we can make the factories less smelly neighbours.”

Ray Mathias | alfa
Further information:
http://www.jic.bbsrc.ac.uk/index.htm

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>