Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover the gene that causes the smell of the earth and leads camels to water


Scientists at the John Innes Centre (JIC), Norwich have discovered the gene that gives freshly turned soil its distinctive smell. A smell, it is believed, that enables camels to find water in the desert. The ‘earthy’ smell is caused by geosmin, a chemical produced by a common bacterium, Streptomyces coelicolor, that is found in most soils. The discovery of the gene that produces geosmin is reported in the International science journal the Proceedings of the National Academy of Sciences of the USA.

“The smell of Streptomyces may be a matter of life and death to the camel” said Professor Keith Chater (Head of Molecular Microbiology at JIC), “but these bacteria are also of enormous importance to humans as they are a major source of the antibiotics we use in medicine. This discovery was made using a technique that will allow us to better understand how Streptomyces makes the chemicals that are so important to us.”

The JIC researchers tracked down the source of Streptomyces’ smell to one gene out of the 8,000 that make up its complete genome. The Norwich scientists have been studying Streptomyces for years because of its importance as a natural chemical factory that makes a large number of useful medicines, it produces anti-cancer agents and immuno-suppressants as well as antibiotics. A year ago the JIC team, working with colleagues at the Sanger Centre near Cambridge, announced they had completely sequenced all 8,000 genes of Streptomyces. Their next challenge was to sort out what each of these 8,000 genes did. Fortunately, they had just invented a method to selectively switch off individual genes and so they began to use this to study the genes of Streptomyces. Among the 8,000 genes were a couple that the scientists thought might be responsible for making geosmin, so they tried switching them off to see what happened. Sure enough, switching off one of the genes eliminated the smell, and when they checked they found that the bacteria no longer made geosmin.

“Our discovery may seem a bit trivial but it demonstrates that we can now unravel how all the genes in this important bacteria work ” said Professor Chater . He concluded, “The discovery is not as useless as it first seems. Gardeners may delight in the smell of geosmin in freshly turned soil but the smell is less welcome when it is produced by pharmaceutical factories that are growing Streptomyces to produce antibiotics. By shutting down the bacteria’s ability to produce geosmin we can make the factories less smelly neighbours.”

Ray Mathias | alfa
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>