Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientist locates more than 1,000 novel genes in mouse and human

04.02.2003


’Best laid plans of mice and men’



Using both the mouse and human genomes, a computer scientist at Washington University in St. Louis and international collaborators have developed a method for predicting novel genes in both genomes. With the method the scientists have discovered 1,019 novel genes that are found in both man and mouse. The breakthrough is expected to speed up discovery of genes in both genomes as well as those of other mammals. Because it is efficient and cost-effective, laboratories are likely to use it and pursue genetic studies on a number of major fronts.

"Whereas it might have taken 7,000 experiments to verify a thousand genes, with our method it now will take only about 1,500," said Michael R. Brent, Ph.D., associate professor of computer science at Washington University in St. Louis.


Brent developed TWINSCAN, one of the programs used to predict genes by looking at both the alignment between the two genomes and statistical patterns in the individual DNA sequences of each genome. DNA is comprised of four varieties of bases (commonly abbreviated as A, T, G, C). The myriad different arrangements of these base pairings -- or sequences -- are the instructions for making proteins, which in turn give physiological traits such as color, hair type, muscle variations, etc. DNA looks like a long string of unintelligible pairings, but programs such as Brent’s highlight the genes in the sequence, making sense of it for biomedical researchers.

Simply put, what Brent and his colleagues did was develop computer programs that use patterns of evolutionary conservation -- DNA sequences that have not changed since the common ancestor of mouse and man -- to improve the accuracy of gene prediction. They identified a set of 1,019 predicted novel mouse genes and showed that genes in this set can be verified experimentally with a very high success rate.

A paper describing the results was published in the Feb. 4, 2003, issue of the Proceedings of the National Academy of Science. Brent’s collaborators included researchers in Barcelona, Spain, Geneva, Switzerland, the United Kingdom and GlaxoSmithKline, in King of Prussia, Pa.

Among the genes the researchers believe they have found are a new relative of the dystrophin gene, which is mutated in Duchenne muscular dystrophy, a number of genes involved in neural development, and several immune system genes.

There are between 25,000 and 30,000 genes in both the human and mouse genomes, with no more than 500 genes separating the two mammals. "We know the locations of about 15,000 to 22,000 genes," Brent said. ’There is a big chunk of genes that we know are missing, some of them multi-exon genes. (Exons are segments of the gene that contain the protein coding portion). We now have this very sensitive and specific method for finding, predicting and testing multi-exon genes in mammals, and we think that the method provides a very good tool for completing the catalog of multi-exon genes in humans."

An unknown portion of the missing genome is comprised of single-exon genes, which present a different problem for gene prediction, partly because single-exon genes can be confused with a class of genes called processed pseudo genes. Beyond delineating the human and mouse genomes, Brent conjectured that the method of gene prediction would enhance analysis of genomes more closely related to the human genome, such as the monkey and other primates, as well as the chicken and rat genomes.

Brent received a bachelor’s degree in mathematics from MIT in 1985 and a Ph.D. in Computer Science in 1991. His doctoral research at the MIT Artificial Intelligence Lab focused on machine learning of human languages. From 1991 to 1999 he served as Assistant and then Associate Professor of Cognitive Science at Johns Hopkins University, where his research focused on mathematical models of how children learn their native languages. After moving to the Department of Computer Science and Engineering at Washington University in 1999, Brent began a new research program in computational biology focusing on mathematical models for predicting the locations and structures of genes in genome sequences. He currently holds a joint appointment in the Washington University School of Medicine Department of Genetics and devotes all of his effort to computational gene prediction and experimental gene verification.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>