Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange properties of the tequila plant studied by Mexican student

04.02.2003


Tequila is the national drink of Mexico and is also hugely popular worldwide. Now a Mexican student has come to England to study the unusual properties of tequila plants.



Postgraduate student Ivan Saldana Oyarzabal, from Guadalajara, which is 50km from the town of Tequila, is studying Agave tequilana and its unusual behaviour at the University of Sussex.

“These agave plants grow in extreme environments and they have a very particular behaviour,” says Ivan. “They are important plants economically and culturally, but their molecular biology has not been investigated that much in the past.”


Past research has mainly concentrated on the agave plants’ chemical and industrial properties, for example how to produce alcohol from them and how to use the waste products from tequila production.

Unlike 90% of all other plants, Agave tequilana closes its pores in the heat of the day to reduce water loss and opens them at night to take in the carbon dioxide it needs. This is known as Crassulacean Acid Metabolism (CAM) – an evolutionary adaptation to hot and dry regions where water conservation is vital.

The Toltex Indians discovered tequila as a drink more than 200 years ago. Agave plants thrive in Mexico where conditions such as altitude and climate are perfect for their growth. It takes the agave plant 8 to 10 years to mature and be ready for harvesting and distilling.

“Almost all agave plants are clones because they are never allowed to develop seeds. This makes them vulnerable to parasites and diseases,” says Ivan. “Normally they never flower as the maximum amount of sugar in the plants is just before they flower.”

Eighteen agave plants have been shipped over from Mexico for this project. Ivan’s research is funded by the Consejo Nacional de Ciencia y Tecnología (the Mexican Council for Science and Technology).

Peter Simmons | alfa
Further information:
http://www.sussex.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>