Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic heterogeneity of Icelanders

04.02.2003


Research undertaken by Professor Einar Árnason at the University of Iceland, Reykjavik and published in the January 2003 issue of Annals of Human Genetics highlights the inaccuracy of claims that Icelanders are a ’genetically homogenous’ population.

Professor Árnason explains in his article: "Recently, statements have been made about a special ’genetic homogeneity’ of the Icelanders that are at variance with earlier work on blood groups and allozymes." Iceland has been said to be an "island so inbred that it is a happy genetic hunting ground", ideal for gene mapping, and that "nowhere else has such a pure – and predictable – genetic inheritance" in the popular press. This supposed genetic homogeneity was a major factor in the establishment of deCODE Genetics, the biotechnology company set up in Iceland in 1996 to map disease genes in the Icelandic population. The geographical isolation of the country with little migration for over 1000 years, combined with a series of disasters such as plague and famine, was presumed to have minimized variation in the gene pool. Researchers now suggest that there was a lack of evidence to confirm this homogeneity.

To investigate these claims an extensive reanalysis of mtDNA variation was undertaken by examining primary data from original sources for 26 European populations. The results showed that Icelanders are actually among the most genetically heterogeneous Europeans by the mean number of nucleotide differences, as well as by estimates of parameters of the neutral theory. This is a signature of population admixture during the founding or history of Iceland. Examination of the published literature on blood group and allozyme variation did not provide any support for the notion of special genetic homogeneity of the Icelanders, and further studies of microsatellite variation are unlikely to do so. It is doubtful that population changes during past calamities had much effect on the genetic variability of Icelanders.



Árnason identified anomalies in data used in previous studies that were in some instances due to errors in publicly accessible databases. By reanalysis using primary data from original sources the errors were avoided in this study, and steps were taken to correct them so that they are not propagated in future studies. Árnason concludes "claims about a special genetic homogeneity of Icelanders relative to European populations would be suspect to the extent that they depended on anomalous data instead of the primary data. In any case, one would not expect that meaningful patterns about homogeneity, founder effects and drift in different populations could emerge from analyses whose assumptions are violated and using erroneous data."

In the same issue of Annals of Human Genetics, in a commentary on the Árnason article, Dr Peter Forster at the University of Cambridge says of the extent of primary data errors in this type of research: "One solution may be for journals to impose more rigorous checks that would discourage hasty submission of manuscripts without adequate proofreading, for example by informing all submitting authors that sequence electropherograms routinely will be checked in the course of the reviewing process. But ultimately, of course, it is up to the authors to ensure the accuracy of their data, and the Icelandic example provides a warning that more care is needed than has been practised in the past." Dr Forster also warns: "There is no reason to suppose that DNA sequencing errors are restricted to mtDNA. In fact, it is mainly because mtDNA is a non-recombining genetic unit that many errors are easily identified by phylogenetic analysis; errors in nuclear loci or in rapidly mutating loci such as short tandem repeats will be much harder to detect."

Professor Einar Árnason | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>