Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic heterogeneity of Icelanders

04.02.2003


Research undertaken by Professor Einar Árnason at the University of Iceland, Reykjavik and published in the January 2003 issue of Annals of Human Genetics highlights the inaccuracy of claims that Icelanders are a ’genetically homogenous’ population.

Professor Árnason explains in his article: "Recently, statements have been made about a special ’genetic homogeneity’ of the Icelanders that are at variance with earlier work on blood groups and allozymes." Iceland has been said to be an "island so inbred that it is a happy genetic hunting ground", ideal for gene mapping, and that "nowhere else has such a pure – and predictable – genetic inheritance" in the popular press. This supposed genetic homogeneity was a major factor in the establishment of deCODE Genetics, the biotechnology company set up in Iceland in 1996 to map disease genes in the Icelandic population. The geographical isolation of the country with little migration for over 1000 years, combined with a series of disasters such as plague and famine, was presumed to have minimized variation in the gene pool. Researchers now suggest that there was a lack of evidence to confirm this homogeneity.

To investigate these claims an extensive reanalysis of mtDNA variation was undertaken by examining primary data from original sources for 26 European populations. The results showed that Icelanders are actually among the most genetically heterogeneous Europeans by the mean number of nucleotide differences, as well as by estimates of parameters of the neutral theory. This is a signature of population admixture during the founding or history of Iceland. Examination of the published literature on blood group and allozyme variation did not provide any support for the notion of special genetic homogeneity of the Icelanders, and further studies of microsatellite variation are unlikely to do so. It is doubtful that population changes during past calamities had much effect on the genetic variability of Icelanders.



Árnason identified anomalies in data used in previous studies that were in some instances due to errors in publicly accessible databases. By reanalysis using primary data from original sources the errors were avoided in this study, and steps were taken to correct them so that they are not propagated in future studies. Árnason concludes "claims about a special genetic homogeneity of Icelanders relative to European populations would be suspect to the extent that they depended on anomalous data instead of the primary data. In any case, one would not expect that meaningful patterns about homogeneity, founder effects and drift in different populations could emerge from analyses whose assumptions are violated and using erroneous data."

In the same issue of Annals of Human Genetics, in a commentary on the Árnason article, Dr Peter Forster at the University of Cambridge says of the extent of primary data errors in this type of research: "One solution may be for journals to impose more rigorous checks that would discourage hasty submission of manuscripts without adequate proofreading, for example by informing all submitting authors that sequence electropherograms routinely will be checked in the course of the reviewing process. But ultimately, of course, it is up to the authors to ensure the accuracy of their data, and the Icelandic example provides a warning that more care is needed than has been practised in the past." Dr Forster also warns: "There is no reason to suppose that DNA sequencing errors are restricted to mtDNA. In fact, it is mainly because mtDNA is a non-recombining genetic unit that many errors are easily identified by phylogenetic analysis; errors in nuclear loci or in rapidly mutating loci such as short tandem repeats will be much harder to detect."

Professor Einar Árnason | EurekAlert!

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>