Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic heterogeneity of Icelanders

04.02.2003


Research undertaken by Professor Einar Árnason at the University of Iceland, Reykjavik and published in the January 2003 issue of Annals of Human Genetics highlights the inaccuracy of claims that Icelanders are a ’genetically homogenous’ population.

Professor Árnason explains in his article: "Recently, statements have been made about a special ’genetic homogeneity’ of the Icelanders that are at variance with earlier work on blood groups and allozymes." Iceland has been said to be an "island so inbred that it is a happy genetic hunting ground", ideal for gene mapping, and that "nowhere else has such a pure – and predictable – genetic inheritance" in the popular press. This supposed genetic homogeneity was a major factor in the establishment of deCODE Genetics, the biotechnology company set up in Iceland in 1996 to map disease genes in the Icelandic population. The geographical isolation of the country with little migration for over 1000 years, combined with a series of disasters such as plague and famine, was presumed to have minimized variation in the gene pool. Researchers now suggest that there was a lack of evidence to confirm this homogeneity.

To investigate these claims an extensive reanalysis of mtDNA variation was undertaken by examining primary data from original sources for 26 European populations. The results showed that Icelanders are actually among the most genetically heterogeneous Europeans by the mean number of nucleotide differences, as well as by estimates of parameters of the neutral theory. This is a signature of population admixture during the founding or history of Iceland. Examination of the published literature on blood group and allozyme variation did not provide any support for the notion of special genetic homogeneity of the Icelanders, and further studies of microsatellite variation are unlikely to do so. It is doubtful that population changes during past calamities had much effect on the genetic variability of Icelanders.



Árnason identified anomalies in data used in previous studies that were in some instances due to errors in publicly accessible databases. By reanalysis using primary data from original sources the errors were avoided in this study, and steps were taken to correct them so that they are not propagated in future studies. Árnason concludes "claims about a special genetic homogeneity of Icelanders relative to European populations would be suspect to the extent that they depended on anomalous data instead of the primary data. In any case, one would not expect that meaningful patterns about homogeneity, founder effects and drift in different populations could emerge from analyses whose assumptions are violated and using erroneous data."

In the same issue of Annals of Human Genetics, in a commentary on the Árnason article, Dr Peter Forster at the University of Cambridge says of the extent of primary data errors in this type of research: "One solution may be for journals to impose more rigorous checks that would discourage hasty submission of manuscripts without adequate proofreading, for example by informing all submitting authors that sequence electropherograms routinely will be checked in the course of the reviewing process. But ultimately, of course, it is up to the authors to ensure the accuracy of their data, and the Icelandic example provides a warning that more care is needed than has been practised in the past." Dr Forster also warns: "There is no reason to suppose that DNA sequencing errors are restricted to mtDNA. In fact, it is mainly because mtDNA is a non-recombining genetic unit that many errors are easily identified by phylogenetic analysis; errors in nuclear loci or in rapidly mutating loci such as short tandem repeats will be much harder to detect."

Professor Einar Árnason | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>