Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies unlock Methuselah’s secrets

30.01.2003


New research published in Genome Biology investigates genes that increase the life span of fruit flies in an effort to gain a greater understanding of the ageing process. The researchers from the University of Southern California and Harvard Medical School screened 10,000 fruit fly populations that were mutated.

Their results revealed that six populations of mutant flies lived 5-17% longer than normal. Furthermore, analysis of these long-lived flies showed that the extended life span was caused by the overexpression of six different genes.

The use of the fruit fly Drosophila melanogaster in aging research is common as these flies are short-lived in comparison to humans but carry out many of the same biological processes. The current focus of research is on genes that increase the life span of an animal because it is difficult to disentangle changes that decrease life span from those that cause disease.



Jumping genes or transposable elements are regions of DNA that are able to move around the genome of an organism. The movement of these transposable elements can cause mutations because they interrupt a gene in another part of the genome. Gary Landis, Depak Bhole and John Tower exploited this phenomenon by using a chemically controlled transposable element that acts as an accelerator of gene expression to find mutations that could make flies live longer. Crucially, they were able to turn this acceleration on an off by feeding the flies a specific chemical and to look at the effects of the mutations in adult flies.

Their experiments revealed six fly populations that lived 5-17% longer than normal flies. Characterisation of these mutant flies showed increased expression of a different gene for each population. Interestingly the overexpressed genes were involved in a variety of fundamental cellular processes, which raises the possibility that similar effects are produced in higher organisms or even humans. The authors, however, are cautious about the implications of their findings

"Further experiments will be required to confirm the role of these genes in life-span regulation, and to determine their interactions with each other and in known or novel life-span regulatory pathways."

Gordon Fletcher | Genome Biology
Further information:
http://genomebiology.com/mkt/1001/2003/4/2/R8
http://www.genomebiology.com/pressreleases
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>