Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen key switch in transforming adult stem cells from fat into cartilage

03.02.2003


In their ongoing research on turning adult stem cells isolated from fat into cartilage, Duke University Medical Center researchers have demonstrated that the level of oxygen present during the transformation process is a key switch in stimulating the stem cells to change.

Their findings were presented today (Feb. 2, 2003) at the annual meeting of the Orthopedic Research Society.

Using a biochemical cocktail of steroids and growth factors, the researchers have "retrained" specific adult stem cells that would normally form the structure of fat into another type of cell known as a chondrocyte, or cartilage cell. During this process, if the cells were grown in the presence of "room air," which is about 20 percent oxygen, the stem cells tended to proliferate; however, if the level of oxygen was reduced to 5 percent, the stem cells transformed into chondrocytes.



This finding is important, the researchers say, because this low oxygen level more closely simulates the natural conditions of cartilage, a type of connective tissue that cushions many joints throughout the body. However, since it is a tissue type poorly supplied by blood vessels, nerves and the lymphatic system, cartilage has a very limited capacity for repair when damaged. For this reason, the Duke investigators are searching for a bioengineering approach to correct cartilage injury.

"Our findings suggest that oxygen is a key determinant between proliferation and differentiation, and that hypoxia, or low oxygen levels, is an important switch that tells cells to stop proliferating and start differentiating,’ said David Wang, a fourth-year medical student at Duke, who presented the results of the Duke research.

Farshid Guilak, Ph.D., director of orthopedic research and senior member of the Duke team, said that the combination of growth factors sets the adult stem cells on the right path, while controlling oxygen levels inspires the cells to more readily transform into chondrocytes. Without the growth factors, he said, changing oxygen levels has no effect on the cells.

"For us, the ultimate goal is the development of a bioreactor where we can very carefully control the physical and chemical environment of these cells as they transform," Guilak said. "The results of these experiments which demonstrated the role of oxygen levels in the process represent another important step in achieving this goal."

Two years ago at the Orthopedic Research Society meeting, the Duke team for the first time reported that cartilage cells can be created from fat removed during liposuction procedures. Not only were the researchers able to make cells change from one type into another, they grew the new chondrocytes in a three-dimensional matrix, a crucial advance for success in treating humans with cartilage damage.

In their latest experiments, the team used the materials collected from liposuction procedures performed on multiple human donors. These materials were then treated with enzymes and centrifuged until cells known as adipose-derived stromal cells remained. These isolated cells were infused into three-dimensional beads made up of a substance known as alginate, a complex carbohydrate that is often used as the basis of bioabsorbable dressings, and then treated with the biochemical cocktail.

Those cells grown in hypoxic conditions saw growth inhibited by as much as 44 percent, but saw as much as an 80 percent increase in chondrocyte differentiation.

"No one has looked at the role of hypoxia in the creation of chondrocytes, but it made sense since cartilage normally exists in an hypoxic environment," Wang said. "While we know oxygen plays a role, we don’t know the mechanism. The next questions to answer are how the cells sense the level of oxygen around them and then turn that into a metabolic change."

The researchers anticipate that the first patients to benefit from this research would be those who have suffered some sort of cartilage damage due to injury or trauma. Farther down the line, they foresee a time when entire joints ravaged by osteoarthritis can be relined with bioengineered cartilage.

"We don’t currently have a satisfactory remedy for people who suffer a cartilage-damaging injury," Guilak said. "There is a real need for a new approach to treating these injuries. We envision being able to remove a little bit of fat, and then grow customized, three-dimensional pieces of cartilage that would then be surgically implanted in the joint. One of the beauties of this system is that since the cells are from the same patients, there are no worries of adverse immune responses or disease transmission."

The Duke researchers have developed several animal protocols to test how this cartilage fares in a living system.


The research was supported by the National Institutes of Health; Artecel Sciences, Inc., Durham, N.C.; the North Carolina Biotechnology Center, Research Triangle Park, N.C.; and the Kenan Institute for Engineering, Technology, and Science at North Carolina State University, Raleigh, N.C.

Joining Wang and Guilak in the research were Beverley Fermor, Ph.D., from Duke, and Jeff Gimble, M.D., from Artecel Sciences.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>