Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen key switch in transforming adult stem cells from fat into cartilage

03.02.2003


In their ongoing research on turning adult stem cells isolated from fat into cartilage, Duke University Medical Center researchers have demonstrated that the level of oxygen present during the transformation process is a key switch in stimulating the stem cells to change.

Their findings were presented today (Feb. 2, 2003) at the annual meeting of the Orthopedic Research Society.

Using a biochemical cocktail of steroids and growth factors, the researchers have "retrained" specific adult stem cells that would normally form the structure of fat into another type of cell known as a chondrocyte, or cartilage cell. During this process, if the cells were grown in the presence of "room air," which is about 20 percent oxygen, the stem cells tended to proliferate; however, if the level of oxygen was reduced to 5 percent, the stem cells transformed into chondrocytes.



This finding is important, the researchers say, because this low oxygen level more closely simulates the natural conditions of cartilage, a type of connective tissue that cushions many joints throughout the body. However, since it is a tissue type poorly supplied by blood vessels, nerves and the lymphatic system, cartilage has a very limited capacity for repair when damaged. For this reason, the Duke investigators are searching for a bioengineering approach to correct cartilage injury.

"Our findings suggest that oxygen is a key determinant between proliferation and differentiation, and that hypoxia, or low oxygen levels, is an important switch that tells cells to stop proliferating and start differentiating,’ said David Wang, a fourth-year medical student at Duke, who presented the results of the Duke research.

Farshid Guilak, Ph.D., director of orthopedic research and senior member of the Duke team, said that the combination of growth factors sets the adult stem cells on the right path, while controlling oxygen levels inspires the cells to more readily transform into chondrocytes. Without the growth factors, he said, changing oxygen levels has no effect on the cells.

"For us, the ultimate goal is the development of a bioreactor where we can very carefully control the physical and chemical environment of these cells as they transform," Guilak said. "The results of these experiments which demonstrated the role of oxygen levels in the process represent another important step in achieving this goal."

Two years ago at the Orthopedic Research Society meeting, the Duke team for the first time reported that cartilage cells can be created from fat removed during liposuction procedures. Not only were the researchers able to make cells change from one type into another, they grew the new chondrocytes in a three-dimensional matrix, a crucial advance for success in treating humans with cartilage damage.

In their latest experiments, the team used the materials collected from liposuction procedures performed on multiple human donors. These materials were then treated with enzymes and centrifuged until cells known as adipose-derived stromal cells remained. These isolated cells were infused into three-dimensional beads made up of a substance known as alginate, a complex carbohydrate that is often used as the basis of bioabsorbable dressings, and then treated with the biochemical cocktail.

Those cells grown in hypoxic conditions saw growth inhibited by as much as 44 percent, but saw as much as an 80 percent increase in chondrocyte differentiation.

"No one has looked at the role of hypoxia in the creation of chondrocytes, but it made sense since cartilage normally exists in an hypoxic environment," Wang said. "While we know oxygen plays a role, we don’t know the mechanism. The next questions to answer are how the cells sense the level of oxygen around them and then turn that into a metabolic change."

The researchers anticipate that the first patients to benefit from this research would be those who have suffered some sort of cartilage damage due to injury or trauma. Farther down the line, they foresee a time when entire joints ravaged by osteoarthritis can be relined with bioengineered cartilage.

"We don’t currently have a satisfactory remedy for people who suffer a cartilage-damaging injury," Guilak said. "There is a real need for a new approach to treating these injuries. We envision being able to remove a little bit of fat, and then grow customized, three-dimensional pieces of cartilage that would then be surgically implanted in the joint. One of the beauties of this system is that since the cells are from the same patients, there are no worries of adverse immune responses or disease transmission."

The Duke researchers have developed several animal protocols to test how this cartilage fares in a living system.


The research was supported by the National Institutes of Health; Artecel Sciences, Inc., Durham, N.C.; the North Carolina Biotechnology Center, Research Triangle Park, N.C.; and the Kenan Institute for Engineering, Technology, and Science at North Carolina State University, Raleigh, N.C.

Joining Wang and Guilak in the research were Beverley Fermor, Ph.D., from Duke, and Jeff Gimble, M.D., from Artecel Sciences.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>