Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bed of microneedles: Johns Hopkins scientists’ gadget measures muscle cell force

28.01.2003


Using the same technology that creates tiny, precisely organized computer chips, a Johns Hopkins research team has developed beds of thousands of independently moveable silicone "microneedles" to reveal the force exerted by smooth muscle cells.



Each needle tip in the gadget, whose development and testing is reported this week in the advance online edition of the Proceedings of the National Academy of Sciences, can be painted with proteins cells tend to grab onto. By measuring how far a contracting muscle cell moves each needle, the scientists can calculate the force generated by the cell.

"What we have is a tool to measure and manipulate mechanical interactions between a single cell and its physical and biochemical surroundings," says Christopher Chen, Ph.D., associate professor of biomedical engineering at Johns Hopkins. "Cellular mechanics is really important to many normal and pathologic processes in people, and there’s a lot we don’t understand, even with available technology."


Because smooth muscle cells control the expansion and contraction of airways and blood vessels, the microneedle bed’s ability to measure how a cell’s environment affects the strength, duration and timing of cellular contractions should one day help shed light on medical conditions like asthma and high blood pressure, the researchers say.

The new device complements an ever-growing array of techniques to measure forces exerted by a contracting cell and overcomes some of their limitations, the researchers say. For example, one common method examines a cell lying on a thin sheet of material, which wrinkles when the cell contracts.

"This is like a person lying on a bed sheet and scrunching up part of the sheet," says first author John Tan, a graduate student in biomedical engineering. "Wrinkles appear all over the place, and it can be hard to figure out where the initial force was applied."

To overcome that complexity, scientists have to make mathematical assumptions -- which are difficult to verify. The one-piece microneedle bed, however, lends itself to much simpler calculations because each needle moves independently of the others and requires exactly the same force to move.

"We know how difficult each needle is to move, and we know where it was originally," says Tan. "By measuring the direction and magnitude of the deflection of each needle, we can calculate the force the cell exerts."

Tan and his colleagues painted the needle tips with fibronectin, a protein that forms part of the natural scaffolding between cells. Each smooth muscle cell spread out on the bed of microneedles and then contracted, displacing the needles.

From their experiments, the researchers have already discovered that a cell’s shape affects how it contracts. For example, a cell confined to a small area of fibronectin-painted needles, unable to spread out, exerted little force (i.e., didn’t contract).

They also uncovered the answer to what seemed to be conflicting scientific reports about cellular forces. Some reports indicated that the greater an area grasped by a cell, the greater force the cell exerted, while other reports showed no such correlation. Because the microneedle bed is the first device that can directly measure the forces generated at the cell’s "adhesions," or gripping regions, the researchers were able to prove that both observations are actually correct.

"Force increases with adhesion size only above a certain level; for smaller areas, force and size aren’t correlated," says Tan. "The same cell can actually exhibit both scenarios."

The Johns Hopkins team, composed of three biomedical engineers, a physicist, a molecular biologist and a chemical engineer, next plans to use the device to measure the effects of various proteins thought to stimulate or reduce cells’ contraction, see how the amount of protein affects force, and determine how different types of cells react on the bed. The scientists also plan to make grids with needles of different lengths (shorter posts are harder to bend) to challenge cells’ contractile forces.


The studies were funded by the National Institute of Biomedical Imaging and Bioengineering, the Defense Advanced Research Planning Agency, the Whitaker Foundation, and the Office of Naval Research. Authors on the paper are Tan, Chen, Joe Tien, Dana Pirone, Darren Gray and Kiran Bhadriraju, all of Johns Hopkins. Tien is now at Boston University.

Johns Hopkins Medical Institutions’ news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org and from the Office of Communications and Public Affairs’ direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

Joanna Downer | EurekAlert!
Further information:
http://www.pnas.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>