Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bed of microneedles: Johns Hopkins scientists’ gadget measures muscle cell force

28.01.2003


Using the same technology that creates tiny, precisely organized computer chips, a Johns Hopkins research team has developed beds of thousands of independently moveable silicone "microneedles" to reveal the force exerted by smooth muscle cells.



Each needle tip in the gadget, whose development and testing is reported this week in the advance online edition of the Proceedings of the National Academy of Sciences, can be painted with proteins cells tend to grab onto. By measuring how far a contracting muscle cell moves each needle, the scientists can calculate the force generated by the cell.

"What we have is a tool to measure and manipulate mechanical interactions between a single cell and its physical and biochemical surroundings," says Christopher Chen, Ph.D., associate professor of biomedical engineering at Johns Hopkins. "Cellular mechanics is really important to many normal and pathologic processes in people, and there’s a lot we don’t understand, even with available technology."


Because smooth muscle cells control the expansion and contraction of airways and blood vessels, the microneedle bed’s ability to measure how a cell’s environment affects the strength, duration and timing of cellular contractions should one day help shed light on medical conditions like asthma and high blood pressure, the researchers say.

The new device complements an ever-growing array of techniques to measure forces exerted by a contracting cell and overcomes some of their limitations, the researchers say. For example, one common method examines a cell lying on a thin sheet of material, which wrinkles when the cell contracts.

"This is like a person lying on a bed sheet and scrunching up part of the sheet," says first author John Tan, a graduate student in biomedical engineering. "Wrinkles appear all over the place, and it can be hard to figure out where the initial force was applied."

To overcome that complexity, scientists have to make mathematical assumptions -- which are difficult to verify. The one-piece microneedle bed, however, lends itself to much simpler calculations because each needle moves independently of the others and requires exactly the same force to move.

"We know how difficult each needle is to move, and we know where it was originally," says Tan. "By measuring the direction and magnitude of the deflection of each needle, we can calculate the force the cell exerts."

Tan and his colleagues painted the needle tips with fibronectin, a protein that forms part of the natural scaffolding between cells. Each smooth muscle cell spread out on the bed of microneedles and then contracted, displacing the needles.

From their experiments, the researchers have already discovered that a cell’s shape affects how it contracts. For example, a cell confined to a small area of fibronectin-painted needles, unable to spread out, exerted little force (i.e., didn’t contract).

They also uncovered the answer to what seemed to be conflicting scientific reports about cellular forces. Some reports indicated that the greater an area grasped by a cell, the greater force the cell exerted, while other reports showed no such correlation. Because the microneedle bed is the first device that can directly measure the forces generated at the cell’s "adhesions," or gripping regions, the researchers were able to prove that both observations are actually correct.

"Force increases with adhesion size only above a certain level; for smaller areas, force and size aren’t correlated," says Tan. "The same cell can actually exhibit both scenarios."

The Johns Hopkins team, composed of three biomedical engineers, a physicist, a molecular biologist and a chemical engineer, next plans to use the device to measure the effects of various proteins thought to stimulate or reduce cells’ contraction, see how the amount of protein affects force, and determine how different types of cells react on the bed. The scientists also plan to make grids with needles of different lengths (shorter posts are harder to bend) to challenge cells’ contractile forces.


The studies were funded by the National Institute of Biomedical Imaging and Bioengineering, the Defense Advanced Research Planning Agency, the Whitaker Foundation, and the Office of Naval Research. Authors on the paper are Tan, Chen, Joe Tien, Dana Pirone, Darren Gray and Kiran Bhadriraju, all of Johns Hopkins. Tien is now at Boston University.

Johns Hopkins Medical Institutions’ news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org and from the Office of Communications and Public Affairs’ direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

Joanna Downer | EurekAlert!
Further information:
http://www.pnas.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>