Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bed of microneedles: Johns Hopkins scientists’ gadget measures muscle cell force

28.01.2003


Using the same technology that creates tiny, precisely organized computer chips, a Johns Hopkins research team has developed beds of thousands of independently moveable silicone "microneedles" to reveal the force exerted by smooth muscle cells.



Each needle tip in the gadget, whose development and testing is reported this week in the advance online edition of the Proceedings of the National Academy of Sciences, can be painted with proteins cells tend to grab onto. By measuring how far a contracting muscle cell moves each needle, the scientists can calculate the force generated by the cell.

"What we have is a tool to measure and manipulate mechanical interactions between a single cell and its physical and biochemical surroundings," says Christopher Chen, Ph.D., associate professor of biomedical engineering at Johns Hopkins. "Cellular mechanics is really important to many normal and pathologic processes in people, and there’s a lot we don’t understand, even with available technology."


Because smooth muscle cells control the expansion and contraction of airways and blood vessels, the microneedle bed’s ability to measure how a cell’s environment affects the strength, duration and timing of cellular contractions should one day help shed light on medical conditions like asthma and high blood pressure, the researchers say.

The new device complements an ever-growing array of techniques to measure forces exerted by a contracting cell and overcomes some of their limitations, the researchers say. For example, one common method examines a cell lying on a thin sheet of material, which wrinkles when the cell contracts.

"This is like a person lying on a bed sheet and scrunching up part of the sheet," says first author John Tan, a graduate student in biomedical engineering. "Wrinkles appear all over the place, and it can be hard to figure out where the initial force was applied."

To overcome that complexity, scientists have to make mathematical assumptions -- which are difficult to verify. The one-piece microneedle bed, however, lends itself to much simpler calculations because each needle moves independently of the others and requires exactly the same force to move.

"We know how difficult each needle is to move, and we know where it was originally," says Tan. "By measuring the direction and magnitude of the deflection of each needle, we can calculate the force the cell exerts."

Tan and his colleagues painted the needle tips with fibronectin, a protein that forms part of the natural scaffolding between cells. Each smooth muscle cell spread out on the bed of microneedles and then contracted, displacing the needles.

From their experiments, the researchers have already discovered that a cell’s shape affects how it contracts. For example, a cell confined to a small area of fibronectin-painted needles, unable to spread out, exerted little force (i.e., didn’t contract).

They also uncovered the answer to what seemed to be conflicting scientific reports about cellular forces. Some reports indicated that the greater an area grasped by a cell, the greater force the cell exerted, while other reports showed no such correlation. Because the microneedle bed is the first device that can directly measure the forces generated at the cell’s "adhesions," or gripping regions, the researchers were able to prove that both observations are actually correct.

"Force increases with adhesion size only above a certain level; for smaller areas, force and size aren’t correlated," says Tan. "The same cell can actually exhibit both scenarios."

The Johns Hopkins team, composed of three biomedical engineers, a physicist, a molecular biologist and a chemical engineer, next plans to use the device to measure the effects of various proteins thought to stimulate or reduce cells’ contraction, see how the amount of protein affects force, and determine how different types of cells react on the bed. The scientists also plan to make grids with needles of different lengths (shorter posts are harder to bend) to challenge cells’ contractile forces.


The studies were funded by the National Institute of Biomedical Imaging and Bioengineering, the Defense Advanced Research Planning Agency, the Whitaker Foundation, and the Office of Naval Research. Authors on the paper are Tan, Chen, Joe Tien, Dana Pirone, Darren Gray and Kiran Bhadriraju, all of Johns Hopkins. Tien is now at Boston University.

Johns Hopkins Medical Institutions’ news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org and from the Office of Communications and Public Affairs’ direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

Joanna Downer | EurekAlert!
Further information:
http://www.pnas.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>