Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vision researchers find that photon receptors pair up in neat rows

27.01.2003


Using atomic-force microscopy, vision researchers have taken pictures of some of the eye’s photon receptors in their natural state, and have analyzed their packing arrangement. Their findings, published in the Jan. 9 issue of Nature, offer insight on how light signaling might be controlled in the retina’s outer edge.


THE WELL-ORGANIZED EYE: This close up, high-magnification image of the disc membrane on a rod from the retina shows protrusions lined up in neat, double rows like eggs in a carton. The protrusions are a paracrystal form of rhodopsin, a light absorbing chemical.



The retina receives light through rods and cones. Rods, which are most heavily concentrated on the retina’s outer edge, are sensitive to dim light and to movement, but not to color. Rods, like cones, face away from incoming light. Within rods, light causes a chemical reaction with rhodopsin. This begins a chain of stimulation along the visual pathway, which sends information to the brain for interpretation. The brain can detect one photon of light, the smallest unit of energy, when it is absorbed by a photoreceptor.

The outer segment of a rod looks roughly like a stack of microscopic coins inside a wrapping. The segment is made up of discs covered by a membrane. Scientists studying the retina knew that the outer-segment disc membranes of rods are densely packed with rhodopsin molecules. This bunching together allows for optimum absorption of dim light and for subsequent amplification of the faint signal by the visual pathway. However, how rhodopsin molecules are physically arranged to increase the probability of being activated by a photon was not known.


In the Nature study, scientists looked at outer-segment disc membranes taken from rods in mouse retinae. Their collection method preserved the biological activity and organization of rhodopsin in the membranes. Atomic-force microscopy revealed that much of the surface of the membrane was markedly textured with narrow-ruled lines. At high magnification, researchers could see rhodopsin pairs appearing as tidy double rows of protrusions. They had the regularity of eggs in a carton.

Earlier, scientists conducting biochemical and pharmacological analyses had proposed that similar receptors were arranged in this manner. The recent demonstration that rhodopsin molecules pair in tight, neat lines is consistent with those inferences.

This particular organization of signaling molecules has important implications for recognition of particular proteins, binding, signal amplification, and signal termination. The shape and dimensions of the cell set stringent boundaries for this type of physical configuration, for contacts between the paired units, and for formation of larger structures consisting of these units.

The researchers on this study were Drs. Dimitrios Fotiadis and Andreas Engel of the M.E. Muller Institute for Microscopy, Biozentrum, University of Basel, Switzerland; and University of Washington researchers Drs. Yan Liang, Slawomir Filipek, and David Saperstein from the Department of Ophthalmology, and Dr. Krzysztof Palczewski, who is the Bishop Professor of Ophthalmology and also holds appointments in pharmacology and chemistry.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>