Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vision researchers find that photon receptors pair up in neat rows

27.01.2003


Using atomic-force microscopy, vision researchers have taken pictures of some of the eye’s photon receptors in their natural state, and have analyzed their packing arrangement. Their findings, published in the Jan. 9 issue of Nature, offer insight on how light signaling might be controlled in the retina’s outer edge.


THE WELL-ORGANIZED EYE: This close up, high-magnification image of the disc membrane on a rod from the retina shows protrusions lined up in neat, double rows like eggs in a carton. The protrusions are a paracrystal form of rhodopsin, a light absorbing chemical.



The retina receives light through rods and cones. Rods, which are most heavily concentrated on the retina’s outer edge, are sensitive to dim light and to movement, but not to color. Rods, like cones, face away from incoming light. Within rods, light causes a chemical reaction with rhodopsin. This begins a chain of stimulation along the visual pathway, which sends information to the brain for interpretation. The brain can detect one photon of light, the smallest unit of energy, when it is absorbed by a photoreceptor.

The outer segment of a rod looks roughly like a stack of microscopic coins inside a wrapping. The segment is made up of discs covered by a membrane. Scientists studying the retina knew that the outer-segment disc membranes of rods are densely packed with rhodopsin molecules. This bunching together allows for optimum absorption of dim light and for subsequent amplification of the faint signal by the visual pathway. However, how rhodopsin molecules are physically arranged to increase the probability of being activated by a photon was not known.


In the Nature study, scientists looked at outer-segment disc membranes taken from rods in mouse retinae. Their collection method preserved the biological activity and organization of rhodopsin in the membranes. Atomic-force microscopy revealed that much of the surface of the membrane was markedly textured with narrow-ruled lines. At high magnification, researchers could see rhodopsin pairs appearing as tidy double rows of protrusions. They had the regularity of eggs in a carton.

Earlier, scientists conducting biochemical and pharmacological analyses had proposed that similar receptors were arranged in this manner. The recent demonstration that rhodopsin molecules pair in tight, neat lines is consistent with those inferences.

This particular organization of signaling molecules has important implications for recognition of particular proteins, binding, signal amplification, and signal termination. The shape and dimensions of the cell set stringent boundaries for this type of physical configuration, for contacts between the paired units, and for formation of larger structures consisting of these units.

The researchers on this study were Drs. Dimitrios Fotiadis and Andreas Engel of the M.E. Muller Institute for Microscopy, Biozentrum, University of Basel, Switzerland; and University of Washington researchers Drs. Yan Liang, Slawomir Filipek, and David Saperstein from the Department of Ophthalmology, and Dr. Krzysztof Palczewski, who is the Bishop Professor of Ophthalmology and also holds appointments in pharmacology and chemistry.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>