Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Drug Lead Fights Bacteria that can be Lethal by Disrupting Quorum Sensing and Biofilms

27.01.2003


Compound could lead to a new generation of antibiotics that battle resistance

University at Buffalo scientists have discovered a promising new drug lead that works by inhibiting the sophisticated bacterial communication system called quorum sensing.

The new compound is active against Pseudomonas aeruginosa, the gram-negative infection that strikes -- and usually kills -- cystic fibrosis patients and many others whose immune systems are compromised. The bacteria, like many others that have been routinely treated by antibiotics, have developed strains that are antibiotic-resistant.



The compound and the method the UB scientists used to develop it are described in the current (January 25, 2003) issue of Chemistry & Biology. The research also is discussed in a second article in the "Previews" section of the journal.

A patent application has been filed on the method of synthesis and the compound.

"With this work, we have taken a critical step toward inhibiting quorum sensing for clinical applications," said Hiroaki Suga, Ph.D., UB associate professor of chemistry and corresponding author on the paper.

Quorum sensing is the process by which bacterial cells "sense" that their numbers have reached a certain level, Suga explained, so that they then can mount an effective attack. The process gets switched on, he said, in response to the autoinducers that accumulate in bacterial cells as they begin reproducing.

Once the cells "sense" that a quorum has been reached, they begin to communicate, a process that in turn "throws the switch" for manufacturing virulence factors, such as biofilms.

These tough, layered, polysaccharide shells provide the bacteria with a nearly impenetrable, self-protective mechanism that makes it extremely difficult, and in some cases impossible, to fight with antibiotics.

"Underneath the protective biofilm, the cells are happily reproducing, damaging the tissue and producing toxins," said Suga.

Based on the structure of the quorum-sensing molecule, the autoinducer, the UB team synthesized a library of compounds. This approach then allowed the scientists to discover a subset of molecules that, like the natural autoinducer, activate quorum sensing.

"We then synthesized a small, focused library of quorum-sensing agonists," said Suga. "Surprisingly, this focused library yielded a quorum-sensing antagonist."

"It has been shown that knockout of the quorum-sensing genes in P. aeruginosa significantly reduced its virulence, so this cell-to-cell communication process is an interesting new drug target," he said.

By disrupting the communication process, he explained, the new compound could lead to drugs that will prevent the formation of biofilms, restoring the potency of antibiotic treatments and limiting the development of antibiotic resistance.

Since many other bacterial infections operate through quorum sensing, this molecule likely will boost research into methods to disrupt those as well, he added.

In addition, he said, compounds that inhibit quorum-sensing function differently from traditional antibiotics by attenuating pathogenicity, and therefore could prove very effective against resistant strains.

Suga explained that the quorum-sensing system is responsible for regulating a number of genes, including those that control the production of virulence factors.

"We now have a synthetic molecule that inhibits the master regulatory gene of quorum sensing," he said.

While Pseudomonas aeruginosa, which is ubiquitous in hospitals, has no effect on healthy people, it can be lethal to patients whose immune systems are compromised. In addition to cystic fibrosis patients, whose lungs become clogged with the bacteria, it infects patients receiving chemotherapy, burn patients, AIDS patients, those on ventilators, with catheters and others.

"The resistance problem demands development of a new type of drug, which differs in concept from traditional antibiotics," said Suga.

"Our work demonstrates a new strategy for identifying and designing antagonists to quorum sensing," he said. "We hope that additional studies in this direction lead us to discover even more potent quorum-sensing antagonists, thus generating a new type of antibiotic drug."

The paper is co-authored by Kristina M. Smith, who works in Suga’s lab and is doctoral candidate in the UB Department of Biological Sciences in the College of Arts and Sciences, and Yigong Bu, a former doctoral candidate at UB, who earned his doctorate from the UB Department of Chemistry.

Funding for the work was provided by the Interdisciplinary Research and Creative Activities Fund, Office of the Vice President for Research at UB.

Contact: Ellen Goldbaum, goldbaum@buffalo.edu
Phone: 716-645-5000 ext 1415
Fax: 716-645-3765

Ellen Goldbaum | University at Buffalo
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=60440009

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>