Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Drug Lead Fights Bacteria that can be Lethal by Disrupting Quorum Sensing and Biofilms

27.01.2003


Compound could lead to a new generation of antibiotics that battle resistance

University at Buffalo scientists have discovered a promising new drug lead that works by inhibiting the sophisticated bacterial communication system called quorum sensing.

The new compound is active against Pseudomonas aeruginosa, the gram-negative infection that strikes -- and usually kills -- cystic fibrosis patients and many others whose immune systems are compromised. The bacteria, like many others that have been routinely treated by antibiotics, have developed strains that are antibiotic-resistant.



The compound and the method the UB scientists used to develop it are described in the current (January 25, 2003) issue of Chemistry & Biology. The research also is discussed in a second article in the "Previews" section of the journal.

A patent application has been filed on the method of synthesis and the compound.

"With this work, we have taken a critical step toward inhibiting quorum sensing for clinical applications," said Hiroaki Suga, Ph.D., UB associate professor of chemistry and corresponding author on the paper.

Quorum sensing is the process by which bacterial cells "sense" that their numbers have reached a certain level, Suga explained, so that they then can mount an effective attack. The process gets switched on, he said, in response to the autoinducers that accumulate in bacterial cells as they begin reproducing.

Once the cells "sense" that a quorum has been reached, they begin to communicate, a process that in turn "throws the switch" for manufacturing virulence factors, such as biofilms.

These tough, layered, polysaccharide shells provide the bacteria with a nearly impenetrable, self-protective mechanism that makes it extremely difficult, and in some cases impossible, to fight with antibiotics.

"Underneath the protective biofilm, the cells are happily reproducing, damaging the tissue and producing toxins," said Suga.

Based on the structure of the quorum-sensing molecule, the autoinducer, the UB team synthesized a library of compounds. This approach then allowed the scientists to discover a subset of molecules that, like the natural autoinducer, activate quorum sensing.

"We then synthesized a small, focused library of quorum-sensing agonists," said Suga. "Surprisingly, this focused library yielded a quorum-sensing antagonist."

"It has been shown that knockout of the quorum-sensing genes in P. aeruginosa significantly reduced its virulence, so this cell-to-cell communication process is an interesting new drug target," he said.

By disrupting the communication process, he explained, the new compound could lead to drugs that will prevent the formation of biofilms, restoring the potency of antibiotic treatments and limiting the development of antibiotic resistance.

Since many other bacterial infections operate through quorum sensing, this molecule likely will boost research into methods to disrupt those as well, he added.

In addition, he said, compounds that inhibit quorum-sensing function differently from traditional antibiotics by attenuating pathogenicity, and therefore could prove very effective against resistant strains.

Suga explained that the quorum-sensing system is responsible for regulating a number of genes, including those that control the production of virulence factors.

"We now have a synthetic molecule that inhibits the master regulatory gene of quorum sensing," he said.

While Pseudomonas aeruginosa, which is ubiquitous in hospitals, has no effect on healthy people, it can be lethal to patients whose immune systems are compromised. In addition to cystic fibrosis patients, whose lungs become clogged with the bacteria, it infects patients receiving chemotherapy, burn patients, AIDS patients, those on ventilators, with catheters and others.

"The resistance problem demands development of a new type of drug, which differs in concept from traditional antibiotics," said Suga.

"Our work demonstrates a new strategy for identifying and designing antagonists to quorum sensing," he said. "We hope that additional studies in this direction lead us to discover even more potent quorum-sensing antagonists, thus generating a new type of antibiotic drug."

The paper is co-authored by Kristina M. Smith, who works in Suga’s lab and is doctoral candidate in the UB Department of Biological Sciences in the College of Arts and Sciences, and Yigong Bu, a former doctoral candidate at UB, who earned his doctorate from the UB Department of Chemistry.

Funding for the work was provided by the Interdisciplinary Research and Creative Activities Fund, Office of the Vice President for Research at UB.

Contact: Ellen Goldbaum, goldbaum@buffalo.edu
Phone: 716-645-5000 ext 1415
Fax: 716-645-3765

Ellen Goldbaum | University at Buffalo
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=60440009

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>