Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prehistoric tusks point to earliest fossil evidence of differences between sexes


Image: R. Reisz

Findings point to complex social behaviour

The large tusks of an animal that roamed Earth before the dinosaurs may provide the earliest evidence yet of male-female distinctions in land animals that existed millions of years ago, say U of T scientists.

Robert Reisz, a biology professor at the University of Toronto at Mississauga, and his team have found convincing evidence of sexual dimorphism - different physical traits between the sexes of the same species - in their study of fossils from between 252 to 260 million years ago. They believe that the male Diictodon, a herbivorous barrel-shaped creature, had two large tusks extending down from the upper jaw. The tusks, Reisz says, were used as weapons, possibly for ritualistic or physical combat.

"Our findings give very clear evidence of complex social behaviour," Reisz says. "To see this kind of behaviour [physical combat] early in the history of the group that eventually gave rise to mammals is really quite startling."

Reisz’s study, which is featured on the cover of the January issue of the Proceedings of the Royal Society of London B, was based on detailed studies of nearly a hundred skeletons unearthed in South Africa over the last two decades.

Diictodon appeared during the Late Permian Period of the Paleozoic Era, at least 30 million years before dinosaurs existed. It was part of a group of animals described as mammal-like reptiles and was an evolutionary relative of the animals that evolved into mammals. Diictodon, which was covered in scales and measured about one metre in length, was a burrowing herbivore with a beaked skull and short tail.

In its investigation, the team was able to rule out other uses for the tusks, Reisz says. The tusks were not used for feeding because the females did not have them nor were they used for digging because the ends did not show signs of wear. It appears the tusks became longer, wider and thicker as the animals aged and extended well below the jaw line; those lost, possibly in combat, were never replaced, Reisz says. "All these factors are very strong indicators of armament."

Reisz says these findings go beyond the standard skeletal descriptions that accompany research on fossils. "This is a wonderful opportunity to study the biology of animals that lived so long ago. Rather than just simply looking at them and describing them, we can do more with their lifestyle, with their feeding habits, and with their general biology than just looking at their skeletons would suggest."

Along with Reisz, the study involved Corwin Sullivan, now a graduate student at Harvard University, and Dr. Roger M.H. Smith of the South African Museum in Cape Town, South Africa. The research was funded by the Natural Sciences and Engineering Council of Canada and by the American Museum of Natural History.

Nicolle Wahl is a news services officer with the department of public affairs.


U of T Public Affairs, ph: (416) 978-6974; email:

Nicolle Wahl | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>