Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prehistoric tusks point to earliest fossil evidence of differences between sexes

24.01.2003


Image: R. Reisz


Findings point to complex social behaviour

The large tusks of an animal that roamed Earth before the dinosaurs may provide the earliest evidence yet of male-female distinctions in land animals that existed millions of years ago, say U of T scientists.

Robert Reisz, a biology professor at the University of Toronto at Mississauga, and his team have found convincing evidence of sexual dimorphism - different physical traits between the sexes of the same species - in their study of fossils from between 252 to 260 million years ago. They believe that the male Diictodon, a herbivorous barrel-shaped creature, had two large tusks extending down from the upper jaw. The tusks, Reisz says, were used as weapons, possibly for ritualistic or physical combat.



"Our findings give very clear evidence of complex social behaviour," Reisz says. "To see this kind of behaviour [physical combat] early in the history of the group that eventually gave rise to mammals is really quite startling."

Reisz’s study, which is featured on the cover of the January issue of the Proceedings of the Royal Society of London B, was based on detailed studies of nearly a hundred skeletons unearthed in South Africa over the last two decades.

Diictodon appeared during the Late Permian Period of the Paleozoic Era, at least 30 million years before dinosaurs existed. It was part of a group of animals described as mammal-like reptiles and was an evolutionary relative of the animals that evolved into mammals. Diictodon, which was covered in scales and measured about one metre in length, was a burrowing herbivore with a beaked skull and short tail.

In its investigation, the team was able to rule out other uses for the tusks, Reisz says. The tusks were not used for feeding because the females did not have them nor were they used for digging because the ends did not show signs of wear. It appears the tusks became longer, wider and thicker as the animals aged and extended well below the jaw line; those lost, possibly in combat, were never replaced, Reisz says. "All these factors are very strong indicators of armament."

Reisz says these findings go beyond the standard skeletal descriptions that accompany research on fossils. "This is a wonderful opportunity to study the biology of animals that lived so long ago. Rather than just simply looking at them and describing them, we can do more with their lifestyle, with their feeding habits, and with their general biology than just looking at their skeletons would suggest."

Along with Reisz, the study involved Corwin Sullivan, now a graduate student at Harvard University, and Dr. Roger M.H. Smith of the South African Museum in Cape Town, South Africa. The research was funded by the Natural Sciences and Engineering Council of Canada and by the American Museum of Natural History.

Nicolle Wahl is a news services officer with the department of public affairs.

CONTACT:

U of T Public Affairs, ph: (416) 978-6974; email: nicolle.wahl@utoronto.ca

Nicolle Wahl | EurekAlert!
Further information:
http://www.newsandevents.utoronto.ca/bin4/030123b.asp

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>