Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how the brain pays attention

24.01.2003


Neural circuits that control eye movements play multiple roles in visual attention



With so many visual stimuli bombarding our eyes -- cars whizzing by, leaves fluttering -- how can we focus attention on a single spot -- a word on a page or a fleeting facial expression? How do we filter so purely that the competing stimuli never even register in our awareness?

A pair of Princeton scientists have found that it has a lot to do with the brain circuits that control eye movements. Neuroscientists Tirin Moore and Katherine Armstrong showed that these brain circuits serve a double function: In addition to programming eye movements, they also trigger amplification or suppression of signals that pour in from the locations where the eyes could move.


The finding, published in the Jan. 23 issue of Nature, is the first to pinpoint a neural mechanism behind one of the most fundamental aspects of mental activity -- the ability to direct attention to one thing as opposed to another.

"Without regulating your attention, you would orient to everything that appears and moves. An organism that couldn’t filter anything just wouldn’t work. It would be in a state of constant distraction," said Moore. "This work shows that, whether we are moving our eyes or not, the networks that control eye movements may be a source of that filtering."

Working with monkeys, the researchers picked a site in the brain area that controls eye movements and established exactly where neurons at that site made the eyes move. They then located a single neuron, in another part of the brain, that was responsible for processing visual stimuli from precisely the same location targeted by neurons at the eye movement site.

With the monkeys trained to fixate on the center of their visual field, the researchers displayed an image in the location associated with the two brain areas. They then electrically stimulated the eye movement neurons, but not strongly enough to actually make the eyes move. When this microstimulation was applied, the visual processing neuron showed a much greater response to the displayed image than when the electrical stimulation was not applied. On the other hand, when no image was being displayed, microstimulation of eye movement neurons had no effect on the visual neuron.

The researchers concluded that the very act of preparing an eye movement to a particular location caused an amplification of signals from that area. These eye movement neurons acted like a volume control on an amplifier, controlling the strength of the signal from one particular spot in space, but not altering the quality of that signal. By stimulating neurons in the eye movement area, the researchers in effect forced the animal to shift its attention from one location to another even though it did not move its eyes.

The study hinges on a long-known fact in visual attention -- that humans and primates can attend to something without moving their eyes to that object. This ability is useful for many animals that encounter social situations in which there is a potential danger in looking directly at another animal. But scientists were unsure how closely eye movements were tied to the phenomenon of attention.

Moore and Armstrong’s finding builds on an earlier study in which Moore observed behavioral effects of electrically stimulating eye movement neurons. In that study, monkeys were better able to detect subtle changes in a visual target when their eye movement neurons had been stimulated. The new study, which measured electrical output of visual neurons rather than measuring a behavioral effect, draws a much more powerful conclusion about how the brain is wired.

Calling the study a "landmark," neuroscientist William Newsome of Stanford University compared the work to discovering how the ignition system of a car is wired. "You know, from looking at the car behaviorally, that if you put the key in the ignition and turn the crank it leads to the car starting," said Newsome. "But if you really want to understand what’s going on inside that car -- if you want to go in there and fix things when they go wrong -- you need to know how that behavior comes to pass. Where does the signal go? And then where does it go from there?"

There are many human diseases and disorders that involve defects in information processing and attention -- most famously attention deficit disorder -- for which scientists would like a firm idea of what neural circuits are involved, said Newsome.

"It takes the whole attention field and steps it up a notch, because now people can start asking questions about mechanisms," said Michael Shadlen, an expert in visual perception at the University of Washington.

Apart from the particular finding about spatial attention, the study reveals an important technique that could be used to trace many other types of neural circuits, the researchers said. "Short-term memory, decision-making, planning motor acts all involve flow of information from one area to another and until now we have had no real way to monitor that information flow or reproduce it in the laboratory," said Newsome.

A next step, said Moore, will be to further analyze the eye movement neurons and find out whether they act alone in regulating spatial attention. Another experiment would be to see whether manipulating these neurons and ostensibly making an animal attend to one place or another can determine what information the animal remembers. "If you don’t attend to something, you don’t see it," Moore said. "There are many things that hit our retinas, but we don’t experience them and don’t remember them unless we pay attention to them."

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>