Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple Factors Affect Flight Power Curves Among Species

23.01.2003


Researchers using three dimensional computer modeling and wind tunnels have made the first accurate comparative measurements of muscle power output of birds in-flight to establish that physical structure, body mass, force and flight style all have major effects upon the magnitude and shape of a species’ power curve.

The research by Harvard integrative physiologist Andrew A. Biewener and fellow researchers was publicly funded through the National Science Foundation (NSF) and published in the Jan. 23 edition of Nature.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering.



The research has broad-ranging impact since the power curves provide graphical insight into how muscles are used to produce power for flight at different speeds. Knowledge of flight capabilities would be useful in natural environment studies of issues such as bird migration and a bird’s flight ecology. The data might also be useful in the development of more efficient robotic aerial vehicles, where factors such as thrust and forward velocity are paramount.

Birds were used in the study because they rely primarily upon a single pectoralis muscle in each wing to fly. It is difficult to measure mechanical power output in other animals since most use multiple, distributed muscles for locomotion. In comparison, humans have 45 muscles in the thigh, leg and foot region alone, most of which are active during locomotion.

The researchers established mechanical power curves for cockatiels (Nymphicus hollandicus) and turtledoves (Streptopelia risoria) by measuring the wing and body movements as the birds flew at various speeds in a wind tunnel. They also used high-speed video to record from multiple angles the length changes of the birds’ pectoralis muscle. These data were applied to a computer model of aerodynamic power output. When analyzed with other data collected, the researchers were able to calculate minimum and maximum power outputs for the birds.

The cockatiel and turtledove data were compared to the power curve of magpies, which had been studied previously. It was found that cockatiels and turtledoves generate more power in linear flight than do magpies, which achieve maximum power output during hovering.

The researchers attribute the difference to the individual physical structure and shape of the birds’ tails and wings. Compared to cockatiels and turtledoves, magpies have broad, rounded wings and a longer tail that likely increases drag and prevents it from flying faster than 14 meters per second (31.36 mph) despite it having sufficient pectoralis power to fly at faster speeds. Instead, its wings are better suited for flight at lower speeds and likely allow it to maneuver more effectively.

In contrast, the researchers concluded that turtledoves and cockatiels, which have pointed wings and proportionally smaller tails, can sustain much faster flight speeds. Top speed for a cockatiel is about 14 meters per second (31.36 mph), while turtledoves can achieve 17 meters per second (38.08 mph). In comparison, Tim Montgomery, the current "world’s fastest human," achieved a top speed of about 22.9 mph in the 100-meter dash. The differences in the power curves of the three studied species are most apparent at faster speeds.

The researchers said that flight style may explain power curve differences between the birds studied and magpies. Magpies combine a fluctuating wing beat gait, speed and altitude for an intermittent flight style. Cockatiels and turtledoves use more regular wing motions to fly over a range of speed.

The researchers noted that the maximum mass-specific power output of cockatiels and doves, which can fly for hours before tiring, is 60 percent less than estimated for "galliforms." Galliforms are pheasant-like birds with short, broad wings. Their pectoralis muscles have greater mass and are capable of providing power "bursts," which the birds use to take flight quickly to escape danger before rapidly tiring and returning to the ground to run or hide.

-NSF-

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering through an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding and makes about 10,000 new funding awards. NSF also awards more than $200 million annually in professional and service contracts.

Media contact:
Manny Van Pelt
(703) 292-8070
mvanpelt@nsf.gov

Program contact:
William E. Zamer
(703) 292-8421
wzamer@nsf.gov

Principal Investigator:
Andrew A. Biewener
(781) 275-1725
abiewener@oeb.harvard.edu

Manny Van Pelt | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>