Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find enzyme that triggers hardening of the arteries

21.01.2003


An enzyme found only in the liver and intestines may play a crucial role in the development of hardening of the arteries -- or atherosclerosis, a research team from Wake Forest University Baptist Medical Center and the University of California, San Francisco, report in the Proceedings of the National Academy of Sciences.



The narrowing of arteries through atherosclerosis is a major contributor to heart attacks and strokes.

The confirmation of the relationship between the enzyme, ACAT2, and low density lipoproteins (LDL -- the bad cholesterol) may point to a new way of treating hardening of the arteries.


"Our results support the rationale of pharmacological inhibition of ACAT2 as a possible therapy for atherosclerosis," said Lawrence L. Rudel, Ph.D., professor of comparative medicine and biochemistry at Wake Forest.

Rudel and his colleagues said the study demonstrates that ACAT2 was "crucial for the development of atherosclerosis in mice." The work was all done in mice from an atherosclerosis susceptible strain, because mice are the only animals that can be genetically modified to test the disease process. Knockout mice were developed that were missing the gene that makes ACAT2, and therefore had almost none of the enzyme. These mice were compared to controls that had normal levels of ACAT2.

"The absence of ACAT2 in the small intestine and liver almost completely prevented the development of atherosclerosis," they said. "These studies implicate ACAT2 activity as a major determinant of susceptibility to atherosclerosis."

They found that total cholesterol levels were nearly 2 1/2 times lower in the knockout mice than in the control mice.

Ordinarily, said Rudel, some cholesterol is modified so that it can be transported from the liver to the body’s tissues. The ACAT2 enzyme performs the modification by attaching a fatty acid to the cholesterol molecule, creating a cholesterol ester called cholesterol oleate. Cholesterol oleate is what accumulates in the arteries in atherosclerosis.

The researchers said that mice with ACAT2 had 3 1/2 times more cholesterol esters in blood as the mice without ACAT2. Mice without ACAT2 also absorbed less cholesterol from the intestines, and gallstone formation was limited. Circulating lipoproteins in these mice contain primarily triglycerides rather than the cholesterol esters.

The ACAT2 deficiency also triggered a compensatory increase in HDL, the good cholesterol.

The researchers noted that monkeys with elevated ACAT2 in the liver have increased susceptibility to atherosclerosis.

The results suggest that pharmaceuticals that inhibit ACAT2 "may be the most desirable to study in humans," Rudel said. "Whether alterations in ACAT2 activity influence atherosclerosis susceptibility in humans is currently unstudied."

The senior author on the report was Robert V. Farese Jr., of the Cardiovascular Research Institute and the Department of Medicine at UCSF and the Gladstone Institute of Cardiovascular Disease at UCSF.


###
Contact: Robert Conn (rconn@wfubmc.edu), Karen Richardson (krchrdsn@wfubmc.edu) or Barbara Hahn (bhahn@wfubmc.edu) at (336) 716-4587


Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>