Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find enzyme that triggers hardening of the arteries

21.01.2003


An enzyme found only in the liver and intestines may play a crucial role in the development of hardening of the arteries -- or atherosclerosis, a research team from Wake Forest University Baptist Medical Center and the University of California, San Francisco, report in the Proceedings of the National Academy of Sciences.



The narrowing of arteries through atherosclerosis is a major contributor to heart attacks and strokes.

The confirmation of the relationship between the enzyme, ACAT2, and low density lipoproteins (LDL -- the bad cholesterol) may point to a new way of treating hardening of the arteries.


"Our results support the rationale of pharmacological inhibition of ACAT2 as a possible therapy for atherosclerosis," said Lawrence L. Rudel, Ph.D., professor of comparative medicine and biochemistry at Wake Forest.

Rudel and his colleagues said the study demonstrates that ACAT2 was "crucial for the development of atherosclerosis in mice." The work was all done in mice from an atherosclerosis susceptible strain, because mice are the only animals that can be genetically modified to test the disease process. Knockout mice were developed that were missing the gene that makes ACAT2, and therefore had almost none of the enzyme. These mice were compared to controls that had normal levels of ACAT2.

"The absence of ACAT2 in the small intestine and liver almost completely prevented the development of atherosclerosis," they said. "These studies implicate ACAT2 activity as a major determinant of susceptibility to atherosclerosis."

They found that total cholesterol levels were nearly 2 1/2 times lower in the knockout mice than in the control mice.

Ordinarily, said Rudel, some cholesterol is modified so that it can be transported from the liver to the body’s tissues. The ACAT2 enzyme performs the modification by attaching a fatty acid to the cholesterol molecule, creating a cholesterol ester called cholesterol oleate. Cholesterol oleate is what accumulates in the arteries in atherosclerosis.

The researchers said that mice with ACAT2 had 3 1/2 times more cholesterol esters in blood as the mice without ACAT2. Mice without ACAT2 also absorbed less cholesterol from the intestines, and gallstone formation was limited. Circulating lipoproteins in these mice contain primarily triglycerides rather than the cholesterol esters.

The ACAT2 deficiency also triggered a compensatory increase in HDL, the good cholesterol.

The researchers noted that monkeys with elevated ACAT2 in the liver have increased susceptibility to atherosclerosis.

The results suggest that pharmaceuticals that inhibit ACAT2 "may be the most desirable to study in humans," Rudel said. "Whether alterations in ACAT2 activity influence atherosclerosis susceptibility in humans is currently unstudied."

The senior author on the report was Robert V. Farese Jr., of the Cardiovascular Research Institute and the Department of Medicine at UCSF and the Gladstone Institute of Cardiovascular Disease at UCSF.


###
Contact: Robert Conn (rconn@wfubmc.edu), Karen Richardson (krchrdsn@wfubmc.edu) or Barbara Hahn (bhahn@wfubmc.edu) at (336) 716-4587


Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>