Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers achieve germline transmission of ’gene knockdown’ in mice

20.01.2003


RNA interference (RNAi) has emerged as an extremely versatile and powerful tool in biomedical research. A new study published in the February issue of Nature Structural Biology reports the creation of transgenic mice in which inherited RNAi lowers or silences the expression of a target gene, producing a stable "gene knockdown." This finding extends the power of RNAi to genetic studies in live animals, and has far-reaching implications for the study and treatment of many human diseases.



To adapt RNAi for the study of gene function in mice, Thomas Rosenquist of Stony Brook University (rosenquist@pharm.sunysb.edu; tel: 631-444-8054) and Greg Hannon of Cold Spring Harbor Laboratory (hannon@cshl.edu; tel: 516-367-8889) used genetic engineering to create mouse embryonic stem cells in which RNAi was targeted to a particular gene. (As Hannon and his colleagues established in a previous study, silencing a gene of interest through RNAi can be efficiently achieved by engineering a second gene that encodes short hairpin RNA molecules corresponding to the gene of interest.)

These stem cells were injected into mouse embryos, and chimeric animals were born. Matings of these chimeric mice produced offspring that contained the genetically engineered RNAi-inducing gene in every cell of their bodies.


When Rosenquist, Hannon, and their colleagues examined tissues from the transgenic mice, they found that expression of the gene of interest was significantly reduced everywhere they looked (e.g. liver, heart, spleen). Such a reduction in gene expression is called a "gene knockdown" to distinguish it from traditional methods that involve "gene knockouts" or the complete deletion of a DNA segment from a chromosome.

One advantage of the RNAi-based gene knockdown strategy, shown in this study to work in whole animals, is that in future incarnations, the strategy can be modified to silence the expression of genes in specific tissues, and it can be designed to be switched on and off at any time during the development or adulthood of the animal. These and other features of the strategy, as well as combining it with drug discovery and other methods, should enable scientists to uncover a great deal of information about how genes influence many normal and pathological processes.

Although the current study targeted a gene thought to be involved in DNA repair, any gene would have sufficed as a target to demonstrate proof of principle as this study has done.

The creation of germline transgenic mice with heritable RNAi opens the door to the manipulation of gene activity in living animals for many applications.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks