Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers achieve germline transmission of ’gene knockdown’ in mice

20.01.2003


RNA interference (RNAi) has emerged as an extremely versatile and powerful tool in biomedical research. A new study published in the February issue of Nature Structural Biology reports the creation of transgenic mice in which inherited RNAi lowers or silences the expression of a target gene, producing a stable "gene knockdown." This finding extends the power of RNAi to genetic studies in live animals, and has far-reaching implications for the study and treatment of many human diseases.



To adapt RNAi for the study of gene function in mice, Thomas Rosenquist of Stony Brook University (rosenquist@pharm.sunysb.edu; tel: 631-444-8054) and Greg Hannon of Cold Spring Harbor Laboratory (hannon@cshl.edu; tel: 516-367-8889) used genetic engineering to create mouse embryonic stem cells in which RNAi was targeted to a particular gene. (As Hannon and his colleagues established in a previous study, silencing a gene of interest through RNAi can be efficiently achieved by engineering a second gene that encodes short hairpin RNA molecules corresponding to the gene of interest.)

These stem cells were injected into mouse embryos, and chimeric animals were born. Matings of these chimeric mice produced offspring that contained the genetically engineered RNAi-inducing gene in every cell of their bodies.


When Rosenquist, Hannon, and their colleagues examined tissues from the transgenic mice, they found that expression of the gene of interest was significantly reduced everywhere they looked (e.g. liver, heart, spleen). Such a reduction in gene expression is called a "gene knockdown" to distinguish it from traditional methods that involve "gene knockouts" or the complete deletion of a DNA segment from a chromosome.

One advantage of the RNAi-based gene knockdown strategy, shown in this study to work in whole animals, is that in future incarnations, the strategy can be modified to silence the expression of genes in specific tissues, and it can be designed to be switched on and off at any time during the development or adulthood of the animal. These and other features of the strategy, as well as combining it with drug discovery and other methods, should enable scientists to uncover a great deal of information about how genes influence many normal and pathological processes.

Although the current study targeted a gene thought to be involved in DNA repair, any gene would have sufficed as a target to demonstrate proof of principle as this study has done.

The creation of germline transgenic mice with heritable RNAi opens the door to the manipulation of gene activity in living animals for many applications.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>