Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Suggests Missing Link that Explains How Dinosaurs Learned to Fly

17.01.2003


Ken Dial, who is a professor of vertebrate morphology and a licensed commercial pilot, holds an adult chukar partridge in his flight lab at the University of Montana.
Photo Credit: K.P. Dial, University of Montana


Two-legged dinosaurs may have used their forelimbs as wing-like structures to propel themselves rapidly up steep inclines long before they took to the skies, reports a University of Montana researcher in the January 17 issue of the journal Science. The new theory adds a middle step that may link two current and opposing explanations for how reptiles evolved into flying birds.

According to Kenneth Dial, author of the report, the transition from ground travel to flight may have required a "ramp-up" phase in which rapid movement of the animals’ front appendages actually forced its body downward to gain more foot traction as it made its way up increasingly vertical slopes.

"The big dilemma has been, ’How do you explain the partial wing?,’" says Dial, who is a professor of vertebrate morphology and ecology. "It turns out the proto-wings-precursors to wings birds have today-actually acted more like a spoiler on the back of a race car to keep the animal sure-footed even while climbing up nearly vertical surfaces," he said.



"The development and role of movement in animals is critical to every aspect of their lives," says William Zamer of the National Science Foundation (NSF), the agency that funded the study. "The results may also one day help humans design better vehicles for both land and air travel."

NSF is an independent federal agency that supports fundamental research and education in all fields of science and engineering.

The evolution of flying vertebrates has been a bone of contention since the 1800’s. One school, which embraced the cursorial theory, argued that two-legged, ground-dwelling animals developed feathered wings that allowed them to become airborne. The opposing school, which favored the arboreal theory, held that flight originated in tree-dwelling animals that leapt from limb to limb and eventually developed gliding structures to soften their landings. For a century-and-a-half, each camp has tendered evidence to challenge the opposing theory.

The solution, Dial says, may lie in an ordinary flapping behavior, which he calls "wing-assisted incline running," or WAIR, found in many modern-day hatchling and adult birds. "Although this behavior is common in nature, " he writes, WAIR’s role in the evolution and survival of birds "has remained unappreciated" because it happens in short bursts that are difficult to study in the wild.

So, Dial, who is also a licensed commercial an instrument-rated pilot, applied to partridges devices that sensed g-force and used high-speed film to document wing orientation in a laboratory setting. He found that newly hatched birds, yet unable to fly, successfully used WAIR to climb a 50-degree incline. Slightly older birds used WAIR to climb a 90-degree, or straight-up, surface, and adult birds used their wings literally to defy gravity. Wing flapping kept their bodies secured to the underside surface of a 105-degree overhang.

"A significant portion of the wing beat cycle involves...forces that push the bird toward the inclined substrate, permitting animals to run vertically," Dial observed.

Dial proposes that WAIR in modern-day birds is a remnant of their prehistoric ancestors. "In the proto-bird, this behavior would have represented the intermediate stage in the development of flight-capable, aerodynamic wings." Further re-orientation of the wings could then allow birds to make successful ascents into the air as well as safe landings.

Experts believe birds evolved from a common ancestral protoavis dinosaur some 225 million years ago during the Mesozoic era. As the continental land mass broke apart, birds inhabited all corners of the Earth. While most bird species were wiped out with the dinosaurs 65 million years ago, many scientists consider birds the only true living relative of the dinosaurs.

-NSF-

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Leslie Fink | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html
http://www.nsf.gov/od/lpa/news/03/pr0308_images.htm

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>