Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umbilical cord matrix, a rich new stem cell source, study shows

17.01.2003


The cushioning material or matrix within the umbilical cord known as Wharton’s jelly is a rich and readily available source of primitive stem cells, according to findings by a research team at Kansas State University.



Animal and human umbilical cord matrix cells exhibit the tell-tale characteristics of all stem cells, the capacity to self-renew and to differentiate into multiple cell types.

Researchers Kathy Mitchell, Deryl Troyer, and Mark Weiss of the College of Veterinary Medicine and Duane Davis of the College of Agriculture carried out the studies.


The cells -- called cord matrix stem cells to distinguish them from cord blood cells -- can be obtained in a non-invasive manner from an abundant source of tissue that is typically discarded.

According to Weiss and Troyer, "Umbilical cord matrix cells could provide the scientific and medical research community with a non-controversial and easily attainable source of stem cells for developing treatments for Parkinson’s disease, stroke, spinal cord injuries, cancers and other conditions."

A paper, "Matrix cells from Wharton’s jelly form neurons and glia," appears Jan. 16 in the on-line version of the journal "Stem Cells."

Among the findings: Wharton’s jelly cells from pigs were propagated in the lab for more than a year without losing potency; they can be stored cryogenically and engineered to express foreign proteins.

The cells exhibit telomerase activity, a key indicator of stem cells, and they can be induced to form nerve cells, both neurons and glia, that produce a range of nerve-cell specific traits. Neurons are the nervous system cells that transmit signals; glial cells support the neurons.

On the basis of the encouraging results with animal tissue, the team broadened its investigations to human umbilical cord matrix cells with similar exciting findings -- human umbilical cord matrix cells differentiate into neurons, too.

Most of the promise of developing embryonic stem cell-based therapies for treating several degenerative diseases of the nervous system as well as other types of disease is hindered by the controversial nature of the cell sources. Research progress has also been slowed by having a limited number of existing embryonic stem cell lines available for federally-funded medical research.

"Identifying a non-controversial source of primitive stem cells is a step in the right direction," Davis said.

Wharton’s jelly, discovered in the mid-1600s by Thomas Wharton, a London physician, is the gelatinous connective tissue only found in the umbilical cord. The jelly gives the cord resiliency and pliability, and protects the blood vessels in the umbilical cord from compression.

As an embryo forms, some very primitive cells migrate between the region where the umbilical cord forms and the embryo. Some primitive cells just might remain in the matrix later in gestation or still be there even after the baby is born.

The K-State research team suggests that Wharton’s jelly might be a reservoir of the primitive stem cells that form soon after the egg is fertilized.

Mitchell said, "Our results indicate that Wharton’s jelly cells can be expanded in vitro, maintained in culture and induced to differentiate into neural cells. We think these cells can serve many therapeutic and biotechnological roles in the future."

The team now is evaluating human umbilical cord matrix cells to see if in addition to forming nerve tissues the cells also will differentiate into cardiac muscle and the cells that line the blood vessels.

They note that important progress is being made in the Weiss and Troyer labs where the researchers are looking at the ability of the umbilical cord matrix cells to form new neurons in the brain in an animal model of Parkinson’s disease.

The KSU Research Foundation has filed for U.S. patent protection for the recent discoveries, the method of culturing the stem cells, and a kit for salvaging umbilical cord stem cells after birth.

Funding for this research has come from the National Institutes of Health, a Centers of Biomedical Research Excellence/COBRE award to the University of Kansas, with matching support from the state of Kansas, Kansas State University, University of Kansas, the K-State College of Veterinary Medicine and the Kansas Agricultural Experiment Station.



For patent and commercialization information, contact the Mid-America Commercialization Corporation, 785-532-3900; or send e-mail to macc@ksu.edu. For more about stem cells, see the National Institutes of Health primer at http://www.nih.gov/news/stemcell/primer.htm


Kathy E. Mitchell | EurekAlert!
Further information:
http://www.nih.gov/news/stemcell/primer.htm

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>