Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Discover How Embryo Attaches to the Uterus


Researchers funded by the National Institutes of Health have discovered how an embryo initially attaches to the wall of the uterus-what appears to be one of the earliest steps needed to establish a successful pregnancy.

Specifically, the researchers found that 6 days after an egg is fertilized, the embryo uses specialized molecules on its surface and molecules on the surface of the uterus to attach itself to the wall of the uterus.

"This discovery opens up a promising new realm of research," said Duane Alexander, M.D., Director of the National Institute of Child Health and Human Development (NICHD). "It may lead to insight into infertility, early pregnancy loss, and perhaps to an understanding of the life-threatening complication of pregnancy known as preeclampsia." Part of the funding for the study was provided by the NICHD, the National Institute of General Medical Sciences (NIGMS), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute of Dental and Craniofacial Research (NIDCR), all part of the National Institutes of Health.

The finding appears in the January 17th Science. The research was conducted by scientists at the University of California at San Francisco (UCSF), the Nevada Center for Reproductive Medicine in Reno, the Lawrence Berkeley National Laboratory in Berkeley, California, and the University of Wisconsin, Madison.

About 6 days after fertilization, the embryo is shaped like a sphere. The surface of the sphere is made up of a layer of specialized cells called the trophoblast. At this phase of development, the embryo is called the blastocyst. The trophoblast later gives rise to the cells that will form the fetus’ part of the placenta. (The placenta is made up of both maternal and fetal tissues.) The trophoblast is coated with a protein known as L-selectin. The wall of the uterus is coated with carbohydrate molecules. The researchers believe that as the blastocyst travels along the uterine wall, L-selectin on its surface binds to the carbohydrates on the uterine wall, until the blastocyst gradually slows to a complete stop. After this happens, the cells that later become the fetus’ contribution to the placenta develop. The placental tissue from the fetus then invades the uterine wall by sending finger-like extensions into it. These projections make contact with the maternal blood supply, becoming the pipeline through which the fetus derives nutrients and oxygen, and rids itself of carbon dioxide and wastes.

"It’s analogous to a tennis ball rolling over a table top covered with syrup," said the study’s senior author, Susan Fisher, PhD., UCSF professor of stomatology, anatomy and pharmaceutical chemistry. "The embryo’s journey is arrested by the sticky interaction with the uterine wall."

Dr. Fisher explained that learning about the molecular processes leading up to implantation may provide information useful for treating infertility. Some cases of unexplained infertility and early pregnancy loss are thought to derive from a failure of the trophoblast to properly attach to the uterine wall.

Findings from the study may also offer insight into preeclampsia. In this condition, pregnant women develop dangerously high blood pressure that may lead to convulsions and even death. With previous NICHD funding, Dr. Fisher and her colleagues learned that preeclampsia appears to result from a failure of placental cells to convert to blood vessel-like cells that perform their secondary function of conveying carbon dioxide, oxygen, nutrients, and wastes between the uterus and the fetus. Dr. Fisher said that if trophoblast cells fail to securely attach to the uterine wall, then it’s possible they may not successfully convert to this secondary function.

To conduct the study, researchers at UCSF collected biopsies of the endometrium-the inner lining of the uterus-from volunteers. The tissue samples were taken during the women’s monthly cycle both before the uterus is receptive to the blastocyst’s implantation and at the time when the uterus is most receptive to implantation. The researchers found that the amount of carbohydrate on the uterine wall was greatest at the time when uterine receptivity to the blastocyst was greatest.

In separate, privately funded research conducted at his Nevada clinic, Russell Foulk, M.D. then demonstrated that at the time of implantation, the blastocyst expresses much larger amounts of L-selectin than it does before implantation. (Details of Dr. Foulk’s work are described more fully in the Science article.)

Using the information developed by Dr. Foulk, the UCSF researchers then sought to determine how long after implantation the trophoblast retains its covering of L-selectin. To learn this, they exposed isolated trophoblasts to carbohydrate-covered beads under conditions resembling those found inside the uterus. The researchers found that the trophoblasts bonded to the carbohydrates on the beads. They also found that isolated trophoblasts bond more firmly to sections of uterine lining collected when the uterus is most receptive to implantation than to those collected when the uterine lining is least receptive. The researchers determined that the isolated trophoblasts were able to bond with the uterine carbohydrates for up to the 16th week of pregnancy.

The current study is an extension of earlier research by study author Steven Rosen, Ph.D., UCSF professor of anatomy. He had discovered that infection-fighting white blood cells known as leukocytes use the L-selectin on their surface to roll to a stop on the lining of blood vessels, which are coated with carbohydrate molecules.

"This study shows how basic research in one area can jump-start clinical studies in another," said Judith H. Greenberg, Ph.D., acting director of NIGMS, which funds Dr. Rosen’s L-selectin research.

"The discovery of L-selectin’s role in embryo implantation means that the wealth of knowledge scientists have amassed on this sticky molecule can now be applied to questions related to early pregnancy."

The NICHD, NIGMS, NHLBI, and NIDCR are part of the National Institutes of Health (NIH), the biomedical research arm of the federal government. NIH is part of the U.S. Department of Health and Human Services.

Bob Bock | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>