Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover How Embryo Attaches to the Uterus

17.01.2003


Researchers funded by the National Institutes of Health have discovered how an embryo initially attaches to the wall of the uterus-what appears to be one of the earliest steps needed to establish a successful pregnancy.



Specifically, the researchers found that 6 days after an egg is fertilized, the embryo uses specialized molecules on its surface and molecules on the surface of the uterus to attach itself to the wall of the uterus.

"This discovery opens up a promising new realm of research," said Duane Alexander, M.D., Director of the National Institute of Child Health and Human Development (NICHD). "It may lead to insight into infertility, early pregnancy loss, and perhaps to an understanding of the life-threatening complication of pregnancy known as preeclampsia." Part of the funding for the study was provided by the NICHD, the National Institute of General Medical Sciences (NIGMS), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute of Dental and Craniofacial Research (NIDCR), all part of the National Institutes of Health.


The finding appears in the January 17th Science. The research was conducted by scientists at the University of California at San Francisco (UCSF), the Nevada Center for Reproductive Medicine in Reno, the Lawrence Berkeley National Laboratory in Berkeley, California, and the University of Wisconsin, Madison.

About 6 days after fertilization, the embryo is shaped like a sphere. The surface of the sphere is made up of a layer of specialized cells called the trophoblast. At this phase of development, the embryo is called the blastocyst. The trophoblast later gives rise to the cells that will form the fetus’ part of the placenta. (The placenta is made up of both maternal and fetal tissues.) The trophoblast is coated with a protein known as L-selectin. The wall of the uterus is coated with carbohydrate molecules. The researchers believe that as the blastocyst travels along the uterine wall, L-selectin on its surface binds to the carbohydrates on the uterine wall, until the blastocyst gradually slows to a complete stop. After this happens, the cells that later become the fetus’ contribution to the placenta develop. The placental tissue from the fetus then invades the uterine wall by sending finger-like extensions into it. These projections make contact with the maternal blood supply, becoming the pipeline through which the fetus derives nutrients and oxygen, and rids itself of carbon dioxide and wastes.

"It’s analogous to a tennis ball rolling over a table top covered with syrup," said the study’s senior author, Susan Fisher, PhD., UCSF professor of stomatology, anatomy and pharmaceutical chemistry. "The embryo’s journey is arrested by the sticky interaction with the uterine wall."

Dr. Fisher explained that learning about the molecular processes leading up to implantation may provide information useful for treating infertility. Some cases of unexplained infertility and early pregnancy loss are thought to derive from a failure of the trophoblast to properly attach to the uterine wall.

Findings from the study may also offer insight into preeclampsia. In this condition, pregnant women develop dangerously high blood pressure that may lead to convulsions and even death. With previous NICHD funding, Dr. Fisher and her colleagues learned that preeclampsia appears to result from a failure of placental cells to convert to blood vessel-like cells that perform their secondary function of conveying carbon dioxide, oxygen, nutrients, and wastes between the uterus and the fetus. Dr. Fisher said that if trophoblast cells fail to securely attach to the uterine wall, then it’s possible they may not successfully convert to this secondary function.

To conduct the study, researchers at UCSF collected biopsies of the endometrium-the inner lining of the uterus-from volunteers. The tissue samples were taken during the women’s monthly cycle both before the uterus is receptive to the blastocyst’s implantation and at the time when the uterus is most receptive to implantation. The researchers found that the amount of carbohydrate on the uterine wall was greatest at the time when uterine receptivity to the blastocyst was greatest.

In separate, privately funded research conducted at his Nevada clinic, Russell Foulk, M.D. then demonstrated that at the time of implantation, the blastocyst expresses much larger amounts of L-selectin than it does before implantation. (Details of Dr. Foulk’s work are described more fully in the Science article.)

Using the information developed by Dr. Foulk, the UCSF researchers then sought to determine how long after implantation the trophoblast retains its covering of L-selectin. To learn this, they exposed isolated trophoblasts to carbohydrate-covered beads under conditions resembling those found inside the uterus. The researchers found that the trophoblasts bonded to the carbohydrates on the beads. They also found that isolated trophoblasts bond more firmly to sections of uterine lining collected when the uterus is most receptive to implantation than to those collected when the uterine lining is least receptive. The researchers determined that the isolated trophoblasts were able to bond with the uterine carbohydrates for up to the 16th week of pregnancy.

The current study is an extension of earlier research by study author Steven Rosen, Ph.D., UCSF professor of anatomy. He had discovered that infection-fighting white blood cells known as leukocytes use the L-selectin on their surface to roll to a stop on the lining of blood vessels, which are coated with carbohydrate molecules.

"This study shows how basic research in one area can jump-start clinical studies in another," said Judith H. Greenberg, Ph.D., acting director of NIGMS, which funds Dr. Rosen’s L-selectin research.

"The discovery of L-selectin’s role in embryo implantation means that the wealth of knowledge scientists have amassed on this sticky molecule can now be applied to questions related to early pregnancy."

The NICHD, NIGMS, NHLBI, and NIDCR are part of the National Institutes of Health (NIH), the biomedical research arm of the federal government. NIH is part of the U.S. Department of Health and Human Services.

Bob Bock | EurekAlert!
Further information:
http://www.nichd.nih.gov/new/releases/embryo.cfm

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>