Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes which facilitate the industrial use and application of starch

16.01.2003


The cosmetic, textile, and food industries and even the construction industry use starch, the main energy reserve of plants, as a biodegradable and renewable substance for a variety of applications. To get to know the metabolism of this carbohydrate better and thus facilitate its industrial use and application, Milagros Rodríguez López proposed, in her PhD thesis, the identifying and isolating of the enzyme (or enzymes) responsible for the degradation activity of the precursor molecule for starch: ADP glucose.

This PhD work was directed by Francisco Javier Pozueta Romero at the Institute of Agrobiotechnology and Natural Resources (IARN), a centre of investigation jointly run by Consejo Superior de Investigaciones Científicas (Council for University Scientific Research), the Navarre Government and Navarre Public University.

Considerable quantity of starch in plants



Currently, practically all of industry uses starch and/or its derivatives in some way or another. Starch is used, amongst other things, for the manufacture of biodegradable photographic films, in adhesives, packing materials, detergents, paints and plastics; medical care products, shampoos, creams and lotions, cleansing products and cosmetics; or in the food and drinks industries for producing thickening agents which enhance the uniformity, stability and consistency of foodstuffs.

The widespread use of starch in industry explains the numerous research projects being carried out in order to better understand the biosynthesis process of the carbohydrate in plants and of its equivalent in bacteria: glycogen. However, although many studies have been carried out on starch is formed, what substances impede its synthesis have not been investigated in any depth.

Barley leaves

The conclusion of this doctoral thesis is that, both the accumulation of starch in plants and of glycogen in bacteria is highly determined by the enzymatic activities that synthesise ADP glucose and by those that degrade it. Moreover, in the opinion of Milagros Rodríguez López, ADP glucose is not just a precursor molecule for glycogen and starch, but plays a versatile role at the point of diversification of several metabolic routes.

The authoress’ research has identified two proteins as being possibly responsible for the breaking down of ADP glucose and which, thus, on the breaking up of the ADP glucose molecule, impede the formation of starch in plants. Professor Milagros Rodríguez chose to do the tests on barley leaves as it is in this tissue that enzymatic activity is highest.
The objective then was to isolate the enzyme or enzymes responsible for this enzymatic activity.

In order to carry this out, various techniques were used such as ultracentrifuging or precipitation with ammonium sulphate in order to isolate enzyme or enzymes responsible. According to the results, there are a number of isoforms responsible for the hydrolysis of ADP glucose in the higher plants, which impede the biosynthesis of starch.

As a result of this research, two enzymes have been identified as being possibly responsible for the enzymatic activity: NPP1 (Nucleotide Phosphatase Phosphodiesterase 1) and NPP2 (Nucleotide Phosphatase Phosphodiesterase 2). Subsequently, molecular biology work was carried. Thus the gene sequences were identified and a way of confirming whether these proteins were really responsible for the enzymatic activity or not.

Iñaki Casado Redin | BasqueResearch
Further information:
http://www.unavarra.es

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>