Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes which facilitate the industrial use and application of starch

16.01.2003


The cosmetic, textile, and food industries and even the construction industry use starch, the main energy reserve of plants, as a biodegradable and renewable substance for a variety of applications. To get to know the metabolism of this carbohydrate better and thus facilitate its industrial use and application, Milagros Rodríguez López proposed, in her PhD thesis, the identifying and isolating of the enzyme (or enzymes) responsible for the degradation activity of the precursor molecule for starch: ADP glucose.

This PhD work was directed by Francisco Javier Pozueta Romero at the Institute of Agrobiotechnology and Natural Resources (IARN), a centre of investigation jointly run by Consejo Superior de Investigaciones Científicas (Council for University Scientific Research), the Navarre Government and Navarre Public University.

Considerable quantity of starch in plants



Currently, practically all of industry uses starch and/or its derivatives in some way or another. Starch is used, amongst other things, for the manufacture of biodegradable photographic films, in adhesives, packing materials, detergents, paints and plastics; medical care products, shampoos, creams and lotions, cleansing products and cosmetics; or in the food and drinks industries for producing thickening agents which enhance the uniformity, stability and consistency of foodstuffs.

The widespread use of starch in industry explains the numerous research projects being carried out in order to better understand the biosynthesis process of the carbohydrate in plants and of its equivalent in bacteria: glycogen. However, although many studies have been carried out on starch is formed, what substances impede its synthesis have not been investigated in any depth.

Barley leaves

The conclusion of this doctoral thesis is that, both the accumulation of starch in plants and of glycogen in bacteria is highly determined by the enzymatic activities that synthesise ADP glucose and by those that degrade it. Moreover, in the opinion of Milagros Rodríguez López, ADP glucose is not just a precursor molecule for glycogen and starch, but plays a versatile role at the point of diversification of several metabolic routes.

The authoress’ research has identified two proteins as being possibly responsible for the breaking down of ADP glucose and which, thus, on the breaking up of the ADP glucose molecule, impede the formation of starch in plants. Professor Milagros Rodríguez chose to do the tests on barley leaves as it is in this tissue that enzymatic activity is highest.
The objective then was to isolate the enzyme or enzymes responsible for this enzymatic activity.

In order to carry this out, various techniques were used such as ultracentrifuging or precipitation with ammonium sulphate in order to isolate enzyme or enzymes responsible. According to the results, there are a number of isoforms responsible for the hydrolysis of ADP glucose in the higher plants, which impede the biosynthesis of starch.

As a result of this research, two enzymes have been identified as being possibly responsible for the enzymatic activity: NPP1 (Nucleotide Phosphatase Phosphodiesterase 1) and NPP2 (Nucleotide Phosphatase Phosphodiesterase 2). Subsequently, molecular biology work was carried. Thus the gene sequences were identified and a way of confirming whether these proteins were really responsible for the enzymatic activity or not.

Iñaki Casado Redin | BasqueResearch
Further information:
http://www.unavarra.es

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>