Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes which facilitate the industrial use and application of starch

16.01.2003


The cosmetic, textile, and food industries and even the construction industry use starch, the main energy reserve of plants, as a biodegradable and renewable substance for a variety of applications. To get to know the metabolism of this carbohydrate better and thus facilitate its industrial use and application, Milagros Rodríguez López proposed, in her PhD thesis, the identifying and isolating of the enzyme (or enzymes) responsible for the degradation activity of the precursor molecule for starch: ADP glucose.

This PhD work was directed by Francisco Javier Pozueta Romero at the Institute of Agrobiotechnology and Natural Resources (IARN), a centre of investigation jointly run by Consejo Superior de Investigaciones Científicas (Council for University Scientific Research), the Navarre Government and Navarre Public University.

Considerable quantity of starch in plants



Currently, practically all of industry uses starch and/or its derivatives in some way or another. Starch is used, amongst other things, for the manufacture of biodegradable photographic films, in adhesives, packing materials, detergents, paints and plastics; medical care products, shampoos, creams and lotions, cleansing products and cosmetics; or in the food and drinks industries for producing thickening agents which enhance the uniformity, stability and consistency of foodstuffs.

The widespread use of starch in industry explains the numerous research projects being carried out in order to better understand the biosynthesis process of the carbohydrate in plants and of its equivalent in bacteria: glycogen. However, although many studies have been carried out on starch is formed, what substances impede its synthesis have not been investigated in any depth.

Barley leaves

The conclusion of this doctoral thesis is that, both the accumulation of starch in plants and of glycogen in bacteria is highly determined by the enzymatic activities that synthesise ADP glucose and by those that degrade it. Moreover, in the opinion of Milagros Rodríguez López, ADP glucose is not just a precursor molecule for glycogen and starch, but plays a versatile role at the point of diversification of several metabolic routes.

The authoress’ research has identified two proteins as being possibly responsible for the breaking down of ADP glucose and which, thus, on the breaking up of the ADP glucose molecule, impede the formation of starch in plants. Professor Milagros Rodríguez chose to do the tests on barley leaves as it is in this tissue that enzymatic activity is highest.
The objective then was to isolate the enzyme or enzymes responsible for this enzymatic activity.

In order to carry this out, various techniques were used such as ultracentrifuging or precipitation with ammonium sulphate in order to isolate enzyme or enzymes responsible. According to the results, there are a number of isoforms responsible for the hydrolysis of ADP glucose in the higher plants, which impede the biosynthesis of starch.

As a result of this research, two enzymes have been identified as being possibly responsible for the enzymatic activity: NPP1 (Nucleotide Phosphatase Phosphodiesterase 1) and NPP2 (Nucleotide Phosphatase Phosphodiesterase 2). Subsequently, molecular biology work was carried. Thus the gene sequences were identified and a way of confirming whether these proteins were really responsible for the enzymatic activity or not.

Iñaki Casado Redin | BasqueResearch
Further information:
http://www.unavarra.es

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>