Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purification of purines through electroflotation

14.01.2003


ADE Biotec and the INASMET Foundation, both from the Basque Country, after three years of working together, have developed a new purification technique for purines. The technique is based on electroflotation and could be very beneficial for agriculture as it has a high level (80%+) of purification and very low costs (1 euro/m3). Most of the development project has been carried out at a pilot plant on a Toledo pig farm.



Nowadays purines (excrements plus sewage water from farms) constitute one of the most important problems for agriculture, both from an environmental point of view (its massive use produces contamination of water and land), as well as from an economic aspect (its management demands a lot of time and dedication).

The key to this problem is found in the intensification of agriculture: pastoral farms have ever-increasing numbers in their herds. This logically results in an increase of purines on the farms, assuming there is no increase in the extension of the land on which this fertiliser is used.


In recent years new technologies have been proposed to solve the problem of the purification of purines: anaerobic digestion, biological reactors, composting, drying through co-generation, etc. Even so, the sector still does not have any economically and environmentally viable technique to tackle the problem. In this sense, electroflotation could provide an important step to the answer.

Electroflotation

Electroflotation consists in transferring the purine from one metal plate to another while injecting a low-voltage electrical current between the plaques. Using this method and, as a consequence of the electric current, two phenomena are observed:

- On the one hand, the iron (Fe2+) from the plates dissolves, coagulating the organic material of the purine and making it flocculent. Thus, the organic material takes the form of small balls and can be easily separated from the water.
- On the other, hydrogen bubbles are created making the organic materia float on the water and creating an upper layer easily extractable.

In this way, more than 80% of the chemical Demand of oxygen (quantity of oxygen consumed by the compounds which are oxidised in the water), phosphorous, and nitrogen can be removed from the purine and thus complying with the requirements for its dumping into tanks or for its use on irrigated land). After the process the purine has the aspect of water that is somewhat clearer than natural cider. Moreover, if the procedure is prolonged, using the appropriate techniques, a liquid which is suitable for release into rivers can be achieved.

Other advantages of this technique are its low costs (1 euro/m3 of purine), chemical reagents being unnecessary and without limitations of scale (i.e. applicable to both large and small farms) as well as its easy automation.

Currently, ADE Biotec has a pilot plant in Santa Cruz de Rematar (Toledo) where 1,000 litres of purine per hour are treated. It is hoped that a new plant will be shortly built with a greater capacity and, thus, to validate the technology at an industrial level.

Garazi Andonegi | Basque Research
Further information:
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>