Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye’s light-detection system revealed

15.01.2003


A research team led by Johns Hopkins scientists has discovered that a special, tiny group of cells at the back of the eye help tell the brain how much light there is, causing the pupil to get bigger or smaller. The findings, which appeared in the Jan. 10 issue of Science, largely complete the picture of how light levels are detected in the eye.



"This tiny group of cells, together with rods and cones, are the bulk of the eye’s mechanisms for detecting levels of light and passing that information to the brain," says King-Wai Yau, Ph.D., professor of neuroscience and a Howard Hughes Medical Institute investigator at the Johns Hopkins School of Medicine.

The team previously had shown that this set of retinal cells, all of which contain a protein called melanopsin, are naturally sensitive to light. They also showed that the cells connect to the brain in such a way that they are poised to control how the pupil reacts to light and how animals adapt to day and night.


The new work proves that these melanopsin-containing cells, a subset of so-called retinal ganglion cells, are in fact a working part of the body’s light-detection system and complement the light-detecting role of rods and cones, which also convey information about the color, shape and movement of objects.

"Rods and cones provide high sensitivity to light, allowing the pupil to constrict, but melanopsin-containing cells seem to be crucial for completing the pupil’s response in bright light," says Samer Hattar, Ph.D., a postdoctoral fellow in neuroscience at Johns Hopkins. "Without melanopsin, the pupil fails to constrict fully, even in very bright light."

First authors Hattar and Robert Lucas, Ph.D., of the Imperial College, London, measured how small the pupil of each of two kinds of "knockout" mice became when exposed to known amounts of light. One set of mice were missing the gene for the melanopsin protein, the others lacked rods and cones. In mice without melanopsin, only rods and cones send light to the brain, and in mice without rods and cones, only retinal ganglion cells do so.

In normal mice, the pupil becomes the size of a pinhole when exposed to very bright light. The pupils of "rod-less/cone-less" mice got just as small, but in mice without melanopsin, the smallest attainable size was three times larger than in other mice, the researchers found.

Importantly, they also proved that, even without melanopsin, retinal ganglion cells still develop and connect to the brain in the same way, underscoring that the decreased pupil response is due to melanopsin’s absence.

"In the olfactory system, knocking out certain proteins changes the way the system is wired to the brain, and that easily could have been the case here," says Yau. "Melanopsin is clearly involved in light detection in these retinal ganglion cells, but it is not crucial for their development or connectivity."

At this point the scientists can’t rule out a third contributor in the eye’s light detection system, but report that combining the responses of the two sets of knockout mice matches the pupil response of normal mice very well. "Any other factor in detecting light is of minor importance, at least for the pupil reflex," says Yau.


###
The U.S. researchers were funded by the National Eye Institute and the Howard Hughes Medical Institute. The researchers in England were funded by the U.K. Biotechnology and Biological Sciences Research Council and Hammersmith Hospital Special Trustees. Authors on the paper are Hattar and Yau of Johns Hopkins; Lucas and Russell Foster of the Imperial College, London; and Motoharu Takao and David Berson of Brown University.

Johns Hopkins Medical Institutions’ news releases are available on an EMBARGOED basis on EurekAlert at www.eurekalert.org and from the Office of Communications and Public Affairs’ direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.sciencemag.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>