Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye’s light-detection system revealed

15.01.2003


A research team led by Johns Hopkins scientists has discovered that a special, tiny group of cells at the back of the eye help tell the brain how much light there is, causing the pupil to get bigger or smaller. The findings, which appeared in the Jan. 10 issue of Science, largely complete the picture of how light levels are detected in the eye.



"This tiny group of cells, together with rods and cones, are the bulk of the eye’s mechanisms for detecting levels of light and passing that information to the brain," says King-Wai Yau, Ph.D., professor of neuroscience and a Howard Hughes Medical Institute investigator at the Johns Hopkins School of Medicine.

The team previously had shown that this set of retinal cells, all of which contain a protein called melanopsin, are naturally sensitive to light. They also showed that the cells connect to the brain in such a way that they are poised to control how the pupil reacts to light and how animals adapt to day and night.


The new work proves that these melanopsin-containing cells, a subset of so-called retinal ganglion cells, are in fact a working part of the body’s light-detection system and complement the light-detecting role of rods and cones, which also convey information about the color, shape and movement of objects.

"Rods and cones provide high sensitivity to light, allowing the pupil to constrict, but melanopsin-containing cells seem to be crucial for completing the pupil’s response in bright light," says Samer Hattar, Ph.D., a postdoctoral fellow in neuroscience at Johns Hopkins. "Without melanopsin, the pupil fails to constrict fully, even in very bright light."

First authors Hattar and Robert Lucas, Ph.D., of the Imperial College, London, measured how small the pupil of each of two kinds of "knockout" mice became when exposed to known amounts of light. One set of mice were missing the gene for the melanopsin protein, the others lacked rods and cones. In mice without melanopsin, only rods and cones send light to the brain, and in mice without rods and cones, only retinal ganglion cells do so.

In normal mice, the pupil becomes the size of a pinhole when exposed to very bright light. The pupils of "rod-less/cone-less" mice got just as small, but in mice without melanopsin, the smallest attainable size was three times larger than in other mice, the researchers found.

Importantly, they also proved that, even without melanopsin, retinal ganglion cells still develop and connect to the brain in the same way, underscoring that the decreased pupil response is due to melanopsin’s absence.

"In the olfactory system, knocking out certain proteins changes the way the system is wired to the brain, and that easily could have been the case here," says Yau. "Melanopsin is clearly involved in light detection in these retinal ganglion cells, but it is not crucial for their development or connectivity."

At this point the scientists can’t rule out a third contributor in the eye’s light detection system, but report that combining the responses of the two sets of knockout mice matches the pupil response of normal mice very well. "Any other factor in detecting light is of minor importance, at least for the pupil reflex," says Yau.


###
The U.S. researchers were funded by the National Eye Institute and the Howard Hughes Medical Institute. The researchers in England were funded by the U.K. Biotechnology and Biological Sciences Research Council and Hammersmith Hospital Special Trustees. Authors on the paper are Hattar and Yau of Johns Hopkins; Lucas and Russell Foster of the Imperial College, London; and Motoharu Takao and David Berson of Brown University.

Johns Hopkins Medical Institutions’ news releases are available on an EMBARGOED basis on EurekAlert at www.eurekalert.org and from the Office of Communications and Public Affairs’ direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.sciencemag.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>