Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data presented on first cloned, double knock-out miniature swine

15.01.2003


Important goal achieved in potential animal-to-human organ transplantation



In a session today at the annual meeting of the International Embryo Transfer Society (IETS), Randall Prather, Ph.D., Distinguished Professor of Reproductive Biotechnology at the University of Missouri-Columbia, announced the successful cloning of the first miniature swine with both copies of a specific gene "knocked out" of its DNA. The ultimate goal of this research, which is being conducted in partnership with Immerge BioTherapeutics, Inc (a BioTransplant Incorporated (Nasdaq:BTRN)/Novartis Pharma AG (NYSE:NYS) joint venture company), is to develop a herd of miniature swine that can be used as a safe source for human transplantation, a process known as xenotransplantation.

"The fact that we have been able to clone this particular strain of miniature swine with both copies of the gene that produces GGTA1 knocked out is a very exciting step for the field of xenotransplantation," said Dr. Prather, a researcher in MU’s College of Agriculture, Food and Natural Resources. "Organs from regular swine are too large for human transplant, and this particular strain of miniature swine has been refined for years solely for its potential use in humans."


New options for organ sources are desperately needed to treat the rapidly increasing number of critically ill people on the transplant waiting list (more than 80,000 in the U.S. alone). Researchers have targeted the pig as the best potential candidate for an alternative organ source because of the similarity between human and pig organs and the relative ease of breeding. However, the massive rejection response mounted by the human immune system has been a major hurdle in this research.

A key player in this rejection process is the gene called a-1,3-galactosyltransferase or GGTA1 that produces a sugar molecule. When a foreign organ is introduced, human antibodies attach to the sugar molecule on the surface of pig cells produced from the action of the GGTA1 molecule, thus killing the organ. With both copies of this gene eliminated, the antibodies cannot attach, halting the early rejection process.

Dr. Robert Hawley and scientists at Immerge, in collaboration with Dr. Kenth Gustafsson, first identified the gene that produces GGTA1 and eliminated, or knocked it out, of the DNA of the cells from the miniature swine. This genetic material was then sent to Dr. Prather’s lab, where Dr. Liangxue Lai and colleagues implanted it into an egg that had its DNA eliminated. The egg was stimulated to begin dividing and was later implanted into a sow. Prather and Immerge announced in January 2002 in the journal Science that they had successfully cloned the world’s first single knock-out miniature swine. The genetic material from these swine was then re-engineered with the aim of knocking out the second copy of this critical gene. These cells were then subjected to another round of nuclear transfer cloning, leading to the birth of the double knock-out piglet on November 18, 2002.

In addition to the modified genetics, the Immerge miniature swine also have other important advantages as potential transplantation candidates.

"The strain of swine we are working with seems to be incapable of transmitting Porcine Endogenous Retrovirus (PERV) to human cells in culture, as we reported in March 2002 in the Journal of Virology," said Julia Greenstein, Ph.D., CEO and President, of Immerge. Unlike other viruses, which can be eliminated either through breeding or raising pigs in a clean lab environment, multiple copies of PERV form part of the normal genomic DNA of pigs and are therefore passed from one generation to the next "Although the risk of any harm posed by PERV to xenotransplant recipients may be purely theoretical, use of this line of miniature swine would help minimize this particular risk of this new technology," said Dr. Greenstein.


The University of Missouri-Columbia has a long-standing research collaboration with Immerge and BioTransplant Incorporated in the field of porcine genetic engineering. This close collaboration has allowed this important research to progress at an accelerated pace. The current collaboration is supported by a National Institutes of Health Small Business Innovative Research grant.

Immerge BioTherapeutics was formed on September 26, 2000, as a joint venture between Novartis Pharma AG and BioTransplant Incorporated. The company, which began operations on January 2, 2001, focuses its research efforts toward developing therapeutic applications for xenotransplantation. The name of the company derives from its use of immunology to address the challenges of conducting transplants between species.

Susan Hayes | EurekAlert!

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>