Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding the genetic code: the world’s first truly unnatural organism

14.01.2003


Expanding the genetic code: the world’s first truly unnatural organism


From time immemorial, every living thing has shared the same basic set of building blocks - 20 amino acids from which all proteins are made.


That is, until now: A group of scientists say they have, for the first time, created an organism that can produce a 21st amino acid and incorporate it into proteins completely on its own. The research should help probe some of the central questions of evolutionary theory.

The findings are scheduled to appear in the Jan. 29 print edition of the Journal of the American Chemical Society, a peer-reviewed journal of the world’s largest scientific society. The article was initially published Jan. 4 on the journal’s Web site.



The project could eventually give concrete answers to questions that have generally been regarded as purely speculative: Is 20 the ideal number of basic building blocks? Would additional amino acids lead to organisms with enhanced function? Why has the genetic code not evolved further?

"Why did life settle on 20 amino acids?" asks Ryan Mehl, Ph.D., previously a researcher at the Scripps Research Institute in La Jolla, Calif., and now on the faculty of Franklin & Marshall College in Lancaster, Pa. "Would more amino acids give you a better organism -- one that could more effectively adapt if placed under selective pressure?"

To address this question, Mehl and a team of scientists led by Peter Schultz, Ph.D., professor of chemistry at Scripps, added a pathway to an E. coli bacterium that allows it to make a new amino acid -- p-aminophenylalanine (pAF) -- from simple carbon sources. Analytical techniques showed that pAF was incorporated into proteins with a fidelity rivaling that of the 20 natural amino acids.

"This allows you to have a totally autonomous organism that you can ’race’in one pot by evolving the new bacterium alongside its ancestors with 20 amino acids," says Christopher Anderson, a researcher at Scripps and another author of the paper. By racing the organisms -- exposing both to selective pressures at the same time and watching their development -- the researchers hope to see if the organism with the expanded genetic code has an evolutionary advantage over natural organisms.

A number of scientists have previously added unnatural amino acids to organisms, but most of these experiments involved eliminating the organism’s supply of the natural amino acid and substituting a close relative. "So, in the end, you still have a 20 amino acid bacterium, but it’s using an unnatural amino acid instead of the natural one," Anderson says.

"What our group really wanted to do is expand the genetic code, not just recode it. To do that, it takes a lot more effort. You have to come up with some way of specifically denoting how the protein is going to encode this 21st amino acid, because everything else in the genetic code already has a meaning associated with it."

To solve the problem, they used a process called amber suppression. This requires taking a stop codon -- a chunk of the genetic code that acts as a roadblock for protein synthesis -- and making it no longer mean "stop." Instead it now codes for the unnatural amino acid, so that the only way to suppress the codon is with the proper unnatural amino acid. "So you basically have a whole new pathway that you’ve created where the unnatural amino acid gets specifically [placed] onto a t-RNA," Anderson says.

The true novelty of the current paper is in biosynthesis -- the ability of the bacterium to make the new amino acid by itself, as opposed to being fed an unnatural amino acid from an outside source. "This bug is self-sufficient; it can make, load and incorporate the new amino acid in the emerging protein all on its own," Mehl says. "It’s a bona fide unnatural organism now. Essentially, this bacterium can be added to a minimal media (salts and a basic carbon source) and it’s able to do the rest."

E. coli is notorious for its ability to quickly reproduce, which could conjure images of mutant bacteria running wild. "We crippled the organism’s ability to biosynthesize leucine [one of the 20 essential amino acids] to avoid any risk that the organism could propagate outside a controlled lab setting," Anderson says. "Our unnatural organism will always live in the lab. We have no intention of putting it out in the wild or in commercial products where it could ’get out.’"

How this organism behaves in future experiments will determine, in part, where the research goes from here. "We are now focusing on more ’useful’ unnatural amino acids such as ketone- and PEG-containing amino acids," Anderson says. PEG stands for polyethylene glycol, a polymer that can be connected to proteins used in medicines to enhance their therapeutic value. "I don’t think it is at all unrealistic to imagine that in the not-too-distant future there will be a transgenic goat that can biosynthesize a PEG amino acid and incorporate it into therapeutic proteins secreted into the animal’s milk," Anderson says. "We are just beginning to look at the applications, but we have many projects in the works."

Contact: Beverly Hassell
e-mail: b_hassell@acs.org

Beverly Hassell | EurekAlert!

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>