Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding the genetic code: the world’s first truly unnatural organism

14.01.2003


Expanding the genetic code: the world’s first truly unnatural organism


From time immemorial, every living thing has shared the same basic set of building blocks - 20 amino acids from which all proteins are made.


That is, until now: A group of scientists say they have, for the first time, created an organism that can produce a 21st amino acid and incorporate it into proteins completely on its own. The research should help probe some of the central questions of evolutionary theory.

The findings are scheduled to appear in the Jan. 29 print edition of the Journal of the American Chemical Society, a peer-reviewed journal of the world’s largest scientific society. The article was initially published Jan. 4 on the journal’s Web site.



The project could eventually give concrete answers to questions that have generally been regarded as purely speculative: Is 20 the ideal number of basic building blocks? Would additional amino acids lead to organisms with enhanced function? Why has the genetic code not evolved further?

"Why did life settle on 20 amino acids?" asks Ryan Mehl, Ph.D., previously a researcher at the Scripps Research Institute in La Jolla, Calif., and now on the faculty of Franklin & Marshall College in Lancaster, Pa. "Would more amino acids give you a better organism -- one that could more effectively adapt if placed under selective pressure?"

To address this question, Mehl and a team of scientists led by Peter Schultz, Ph.D., professor of chemistry at Scripps, added a pathway to an E. coli bacterium that allows it to make a new amino acid -- p-aminophenylalanine (pAF) -- from simple carbon sources. Analytical techniques showed that pAF was incorporated into proteins with a fidelity rivaling that of the 20 natural amino acids.

"This allows you to have a totally autonomous organism that you can ’race’in one pot by evolving the new bacterium alongside its ancestors with 20 amino acids," says Christopher Anderson, a researcher at Scripps and another author of the paper. By racing the organisms -- exposing both to selective pressures at the same time and watching their development -- the researchers hope to see if the organism with the expanded genetic code has an evolutionary advantage over natural organisms.

A number of scientists have previously added unnatural amino acids to organisms, but most of these experiments involved eliminating the organism’s supply of the natural amino acid and substituting a close relative. "So, in the end, you still have a 20 amino acid bacterium, but it’s using an unnatural amino acid instead of the natural one," Anderson says.

"What our group really wanted to do is expand the genetic code, not just recode it. To do that, it takes a lot more effort. You have to come up with some way of specifically denoting how the protein is going to encode this 21st amino acid, because everything else in the genetic code already has a meaning associated with it."

To solve the problem, they used a process called amber suppression. This requires taking a stop codon -- a chunk of the genetic code that acts as a roadblock for protein synthesis -- and making it no longer mean "stop." Instead it now codes for the unnatural amino acid, so that the only way to suppress the codon is with the proper unnatural amino acid. "So you basically have a whole new pathway that you’ve created where the unnatural amino acid gets specifically [placed] onto a t-RNA," Anderson says.

The true novelty of the current paper is in biosynthesis -- the ability of the bacterium to make the new amino acid by itself, as opposed to being fed an unnatural amino acid from an outside source. "This bug is self-sufficient; it can make, load and incorporate the new amino acid in the emerging protein all on its own," Mehl says. "It’s a bona fide unnatural organism now. Essentially, this bacterium can be added to a minimal media (salts and a basic carbon source) and it’s able to do the rest."

E. coli is notorious for its ability to quickly reproduce, which could conjure images of mutant bacteria running wild. "We crippled the organism’s ability to biosynthesize leucine [one of the 20 essential amino acids] to avoid any risk that the organism could propagate outside a controlled lab setting," Anderson says. "Our unnatural organism will always live in the lab. We have no intention of putting it out in the wild or in commercial products where it could ’get out.’"

How this organism behaves in future experiments will determine, in part, where the research goes from here. "We are now focusing on more ’useful’ unnatural amino acids such as ketone- and PEG-containing amino acids," Anderson says. PEG stands for polyethylene glycol, a polymer that can be connected to proteins used in medicines to enhance their therapeutic value. "I don’t think it is at all unrealistic to imagine that in the not-too-distant future there will be a transgenic goat that can biosynthesize a PEG amino acid and incorporate it into therapeutic proteins secreted into the animal’s milk," Anderson says. "We are just beginning to look at the applications, but we have many projects in the works."

Contact: Beverly Hassell
e-mail: b_hassell@acs.org

Beverly Hassell | EurekAlert!

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

These could revolutionize the world

24.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>