Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into the genetic pathways that drive segmentation like clockwork

13.01.2003


Researchers at the Stowers Institute for Medical Research are gaining new insight into the molecular players involved in the process of vertebral column formation in the embryo.



A research team headed by Dr. Olivier Pourquie, currently an Associate Scientist at the Stowers Institute, were pioneers in providing evidence for an oscillator called the segmentation clock, a timing mechanism responsible for the periodic production of the somites (the precursors of the vertebrae) in the embryo. This group now reports that the Notch signaling pathway provides the backbone of the segmentation clock in the chick embryo. These findings are reported in the Jan. 12 Advance Online Publication of the journal Nature at by Dr. Pourquie and co-authors Drs. Kim Dale and Miguel Maroto, senior research associates of Dr. Pourquie and co-equal contributors to the research. The paper’s title is "Periodic Notch inhibition by lunatic fringe underlies the chick segmentation clock."

The group discovered that one of the genes controlled by the segmentation clock, lunatic fringe , is involved in a negative feedback loop resulting in the periodic inhibition of Notch signaling. Abnormalities in this signaling loop in mice and humans can lead to severe defects in vertebral column formation and can also be linked to the development of other more widespread pathological conditions of the vertebral column such as scoliosis.


Robb Krumlauf, Scientific Director of the Stowers Institute, said, "These results are very exciting and important because components of the Notch pathway, such as Jagged, Delta 3 and Lunatic fringe have been previously associated with vertebral defects in mouse models and in human syndromes. However, the basis of these skeletal defects was previously unknown, and this discovery firmly links the problems to early patterning processes regulated by the segmentation clock. This work provides new insight into the role of segmentation in the normal development of skeletal structures and how they may go wrong in human disease."

"While it had previously been shown that genes regulated by the segmentation clock (cyclic genes) show oscillations of mRNA levels, this is the first demonstration that the protein of a cyclic gene also oscillates in the embryo," said the researchers in a joint statement. "Thus we suggest that the protein of the cyclic gene lunatic fringe is a crucial component of the chick segmentation clock."

According to the Stowers Institute team, these findings are particularly interesting in light of a recent publication in the journal Science by a research team led of by Dr. Kageyama of Kyoto University. This study describes similar oscillations of the protein coded by another cyclic gene called hes1. The group showed that cultured cells, which do not belong to embryonic segmented structures, exhibit oscillations of both the hes1 mRNA and the Hes1 protein following a single serum shock in vitro.

"Remarkably these oscillations occur with the same periodicity as the ones mediated by the segmentation clock that involve lunatic fringe in the embryo," the Stowers Institute group said. "Together, these findings suggest that the segmentation clock might be "ticking" in other cell types in addition to the precursors of the vertebral column. Therefore, these timing processes may be implicated in a wider range of developmental contexts. Revealing the mechanism and the role of the segmentation clock in the embryo remains a challenge for the future."

Laurie Wimberly | EurekAlert!
Further information:
http://www.nature.com
http://www.stowers-institute.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>