Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into the genetic pathways that drive segmentation like clockwork

13.01.2003


Researchers at the Stowers Institute for Medical Research are gaining new insight into the molecular players involved in the process of vertebral column formation in the embryo.



A research team headed by Dr. Olivier Pourquie, currently an Associate Scientist at the Stowers Institute, were pioneers in providing evidence for an oscillator called the segmentation clock, a timing mechanism responsible for the periodic production of the somites (the precursors of the vertebrae) in the embryo. This group now reports that the Notch signaling pathway provides the backbone of the segmentation clock in the chick embryo. These findings are reported in the Jan. 12 Advance Online Publication of the journal Nature at by Dr. Pourquie and co-authors Drs. Kim Dale and Miguel Maroto, senior research associates of Dr. Pourquie and co-equal contributors to the research. The paper’s title is "Periodic Notch inhibition by lunatic fringe underlies the chick segmentation clock."

The group discovered that one of the genes controlled by the segmentation clock, lunatic fringe , is involved in a negative feedback loop resulting in the periodic inhibition of Notch signaling. Abnormalities in this signaling loop in mice and humans can lead to severe defects in vertebral column formation and can also be linked to the development of other more widespread pathological conditions of the vertebral column such as scoliosis.


Robb Krumlauf, Scientific Director of the Stowers Institute, said, "These results are very exciting and important because components of the Notch pathway, such as Jagged, Delta 3 and Lunatic fringe have been previously associated with vertebral defects in mouse models and in human syndromes. However, the basis of these skeletal defects was previously unknown, and this discovery firmly links the problems to early patterning processes regulated by the segmentation clock. This work provides new insight into the role of segmentation in the normal development of skeletal structures and how they may go wrong in human disease."

"While it had previously been shown that genes regulated by the segmentation clock (cyclic genes) show oscillations of mRNA levels, this is the first demonstration that the protein of a cyclic gene also oscillates in the embryo," said the researchers in a joint statement. "Thus we suggest that the protein of the cyclic gene lunatic fringe is a crucial component of the chick segmentation clock."

According to the Stowers Institute team, these findings are particularly interesting in light of a recent publication in the journal Science by a research team led of by Dr. Kageyama of Kyoto University. This study describes similar oscillations of the protein coded by another cyclic gene called hes1. The group showed that cultured cells, which do not belong to embryonic segmented structures, exhibit oscillations of both the hes1 mRNA and the Hes1 protein following a single serum shock in vitro.

"Remarkably these oscillations occur with the same periodicity as the ones mediated by the segmentation clock that involve lunatic fringe in the embryo," the Stowers Institute group said. "Together, these findings suggest that the segmentation clock might be "ticking" in other cell types in addition to the precursors of the vertebral column. Therefore, these timing processes may be implicated in a wider range of developmental contexts. Revealing the mechanism and the role of the segmentation clock in the embryo remains a challenge for the future."

Laurie Wimberly | EurekAlert!
Further information:
http://www.nature.com
http://www.stowers-institute.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>