Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer molecules correct RNA splicing defects: New strategy for treating many diseases

13.01.2003


With a high-tech fix for faulty cellular editing, scientists at Cold Spring Harbor Laboratory have moved a step closer to developing treatments for a host of diseases as diverse as breast cancer, muscular dystrophy, and cystic fibrosis.



Many human diseases have been linked to defects in a cellular editing process called pre-messenger RNA splicing. Adrian Krainer, a molecular biologist at Cold Spring Harbor Laboratory, has spent years investigating this complex editing process, which takes the information coded in genes and makes it available for building proteins. In a new study published in the journal Nature Structural Biology, Krainer’s team has devised a clever way to correct RNA splicing defects implicated in breast cancer and spinal muscular atrophy (a neurodegenerative disease). In principle, the technique could provide the ability to correct RNA splicing defects associated with any gene or disease.

For now, Krainer’s method has been shown to work under the simplest of conditions -- in test tubes with small segments of RNA. The next step is to adapt the technique for use in living cells. Still, "It’s a very promising approach," says molecular biologist Brenton Graveley, of the University of Connecticut Health Center. "There are a lot of hurdles to be overcome in terms of delivering the corrective molecules to the cells that need to be treated. But theoretically the exact same approach could be taken for any gene at all, and the list of genes that have defects at the level of RNA splicing is very long," says Graveley, who is familiar with the research but not involved in the study.


For cells to produce protein, DNA is first transcribed into pre-messenger RNA (RNA is a chemical cousin of DNA). Pre-messenger RNA is a "word-for-word" representation of a DNA sequence in the language of RNA. But for reasons that remain unclear to scientists, pre-messenger RNA molecules contain excess "words" that are removed by splicing to create mature messenger RNA (mRNA), the templates that cells use to make proteins. In many genetic diseases, gene mutations cause errors in the RNA splicing process. Improperly spliced mRNA molecules lead to the creation of altered proteins that cannot perform their duties properly, resulting in disease.

Gene mutations that alter pre-mRNA splicing frequently cause an important segment of the RNA to be skipped or left out of the mature mRNA. With this in mind, Krainer and colleague Luca Cartegni looked for ways to tell a cell to include a piece of RNA that is erroneously skipped. They took inspiration from natural proteins that guide which segments are included when the cell’s splicing machinery cuts up pre-mRNA and pastes only the important bits back together. One end of these guide proteins attaches to the pre-mRNA transcript. The other end recruits enzymes that carry out the actual cutting and pasting.

Krainer and Cartegni attached the recruiting portion of the guide protein to a synthetic molecule that can be programmed to bind to any piece of RNA according to its sequence. The researchers designed a batch of these molecules corresponding to a mutant form of the BRCA1 gene implicated in breast cancer. The designer molecules successfully caused the splicing machinery to include an important piece of BRCA1 mRNA that is usually skipped. Thus, the designer molecules corrected the splicing error, making a normal messenger RNA from a defective pre-messenger RNA transcript.

Next, the scientists turned their new technology loose on a mutant form of the SMN2 gene which is associated with the neurodegenerative disease spinal muscular atrophy (SMA). People afflicted with SMA generally possess both a fully defective SMN1 gene and one or more copies of the closely related SMN2 gene which, due to skipping of a particular segment during RNA splicing, is capable of producing only small amounts of normal mRNA. The severity of SMA symptoms could be relieved if a patient’s SMN2 gene could be coaxed into producing more normal mRNA by including the skipped RNA segment more often. Just as they corrected splicing defects of BRCA1 RNA, Krainer and Cartegni’s designer molecules also enhanced the production of properly spliced SMN2 RNA.

The scientists dubbed the method ESSENCE (which stands for Exon-Specific Splicing Enhancement by small Chimeric Effectors). The next step is to create ESSENCE designer splicing molecules that pass easily into cells and can home-in on the desired splicing targets. The new study establishes that if such molecules can be developed, they may ultimately prove useful for treating a great diversity of human disease.

Peter Sherwood | EurekAlert!

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>