Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer molecules correct RNA splicing defects: New strategy for treating many diseases

13.01.2003


With a high-tech fix for faulty cellular editing, scientists at Cold Spring Harbor Laboratory have moved a step closer to developing treatments for a host of diseases as diverse as breast cancer, muscular dystrophy, and cystic fibrosis.



Many human diseases have been linked to defects in a cellular editing process called pre-messenger RNA splicing. Adrian Krainer, a molecular biologist at Cold Spring Harbor Laboratory, has spent years investigating this complex editing process, which takes the information coded in genes and makes it available for building proteins. In a new study published in the journal Nature Structural Biology, Krainer’s team has devised a clever way to correct RNA splicing defects implicated in breast cancer and spinal muscular atrophy (a neurodegenerative disease). In principle, the technique could provide the ability to correct RNA splicing defects associated with any gene or disease.

For now, Krainer’s method has been shown to work under the simplest of conditions -- in test tubes with small segments of RNA. The next step is to adapt the technique for use in living cells. Still, "It’s a very promising approach," says molecular biologist Brenton Graveley, of the University of Connecticut Health Center. "There are a lot of hurdles to be overcome in terms of delivering the corrective molecules to the cells that need to be treated. But theoretically the exact same approach could be taken for any gene at all, and the list of genes that have defects at the level of RNA splicing is very long," says Graveley, who is familiar with the research but not involved in the study.


For cells to produce protein, DNA is first transcribed into pre-messenger RNA (RNA is a chemical cousin of DNA). Pre-messenger RNA is a "word-for-word" representation of a DNA sequence in the language of RNA. But for reasons that remain unclear to scientists, pre-messenger RNA molecules contain excess "words" that are removed by splicing to create mature messenger RNA (mRNA), the templates that cells use to make proteins. In many genetic diseases, gene mutations cause errors in the RNA splicing process. Improperly spliced mRNA molecules lead to the creation of altered proteins that cannot perform their duties properly, resulting in disease.

Gene mutations that alter pre-mRNA splicing frequently cause an important segment of the RNA to be skipped or left out of the mature mRNA. With this in mind, Krainer and colleague Luca Cartegni looked for ways to tell a cell to include a piece of RNA that is erroneously skipped. They took inspiration from natural proteins that guide which segments are included when the cell’s splicing machinery cuts up pre-mRNA and pastes only the important bits back together. One end of these guide proteins attaches to the pre-mRNA transcript. The other end recruits enzymes that carry out the actual cutting and pasting.

Krainer and Cartegni attached the recruiting portion of the guide protein to a synthetic molecule that can be programmed to bind to any piece of RNA according to its sequence. The researchers designed a batch of these molecules corresponding to a mutant form of the BRCA1 gene implicated in breast cancer. The designer molecules successfully caused the splicing machinery to include an important piece of BRCA1 mRNA that is usually skipped. Thus, the designer molecules corrected the splicing error, making a normal messenger RNA from a defective pre-messenger RNA transcript.

Next, the scientists turned their new technology loose on a mutant form of the SMN2 gene which is associated with the neurodegenerative disease spinal muscular atrophy (SMA). People afflicted with SMA generally possess both a fully defective SMN1 gene and one or more copies of the closely related SMN2 gene which, due to skipping of a particular segment during RNA splicing, is capable of producing only small amounts of normal mRNA. The severity of SMA symptoms could be relieved if a patient’s SMN2 gene could be coaxed into producing more normal mRNA by including the skipped RNA segment more often. Just as they corrected splicing defects of BRCA1 RNA, Krainer and Cartegni’s designer molecules also enhanced the production of properly spliced SMN2 RNA.

The scientists dubbed the method ESSENCE (which stands for Exon-Specific Splicing Enhancement by small Chimeric Effectors). The next step is to create ESSENCE designer splicing molecules that pass easily into cells and can home-in on the desired splicing targets. The new study establishes that if such molecules can be developed, they may ultimately prove useful for treating a great diversity of human disease.

Peter Sherwood | EurekAlert!

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>