Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation-resistant organism reveals its defense strategies

10.01.2003



The secret to its strength is a ring, Weizmann Institute researchers report in Science

Weizmann Institute scientists have found what makes the bacterium Deinococcus radiodurans the most radiation-resistant organism in the world: The microbe’s DNA is packed tightly into a ring. The findings, published in the January 10 issue of Science, solve a mystery that has long engaged the scientific community.

The red bacterium can withstand 1.5 million rads – a thousand times more than any other life form on Earth and three thousand that of humans. Its healthy appetite has made it a reliable worker at nuclear waste sites, where it eats up nuclear waste and transforms it into more disposable derivatives. The ability to withstand other extreme stresses, such as dehydration and low temperatures, makes the microbe one of the few life forms found on the North Pole. It is not surprising, then, that it has been the source of much curiosity worldwide, recently leading to a debate between NASA and Russian scientists – the latter saying that it originated on Mars, where radiation levels are higher.



Since DNA is the first part of a cell to be damaged by radiation and the most lethal damage is the breakage of both DNA strands, scientists have focused on DNA repair mechanisms to find the answer to the microbe’s resilience. Cells, including human cells, can mend only very few such breaks in their DNA. Microbes, for example, can repair only three to five. Yet D. radiodurans can fix more than 200. Thus scientists believed that the microbe must possess uniquely effective enzymes that repair DNA. However, a series of experiments showed that the microbe’s repair enzymes were very similar to those existing in ordinary bacteria.

Using an assortment of optical and electron microscopy methods, Prof. Avi Minsky of the Weizmann Institute of Science’s Organic Chemistry Department found that the microbe’s DNA is organized in a unique ring that prevents pieces of DNA broken by radiation from floating off into the cell’s liquids. Unlike other organisms, in which DNA fragments are lost due to radiation, this microbe does not lose genetic information because it keeps the severed DNA fragments tightly locked in the ring – by the hundreds, if necessary. The fragments, held close, eventually come back together in the correct, original order, reconstructing the DNA strands.

As exciting as these findings may be, they are not expected to lead to the protection of humans from radiation. “Our DNA is structured in a fundamentally different manner,” says Minsky. The results may, however, lead to a better understanding of DNA protection in sperm cells, where a ring-like DNA structure has also been observed.

More survival tricks

Minsky’s team also found that the microbe undergoes two phases of DNA repair. During the first phase the DNA fixes itself within the ring as described. It then performs an even more unusual stunt.

The bacterium is composed of four compartments, each containing one copy of DNA. Minsky’s group found two small passages between the compartments. After about an hour and a half of repair within the ring, the DNA unfolds and migrates to an adjacent compartment – where it mingles with the copy of DNA residing there. Then the “regular” repair machinery, common in humans and bacteria alike, comes into play – repair enzymes compare between the two copies of DNA, using each as a template to fix the other. Since the DNA has already been through one phase of repair in which many of the breaks are fixed, this phase can be completed relatively easily.

...and a backup system

The finding of a tightly packed ring made the team wonder how the bacterium could live and function under normal conditions. DNA strands must unfurl to perform their job of protein production. How can they do that if they can barely budge? This question led to the uncovering of another of the microbe’s survival strategies: out of the four copies of DNA, there are always two or three tightly packed in a ring while the other copies are free to move about. Thus at any given moment there are copies of DNA that drive the production of proteins and others that are inactive but continuously protected.

Minsky, along with other scientists, believes that the bacterium’s answer to acute stresses evolved on Earth as a response to the harsh environments from which it might have emerged. It is one of the few life forms found in extremely dry areas. The unique defense mechanism that evolved to help it combat dehydration proves useful in protecting it from radiation.

Deinococcus radiodurans was discovered decades ago in canned food that was sterilized using radiation. Red patches appeared in the cans – colonies of the bacterium – setting off questions as to how it could have survived. Though these questions have now been answered, the tide of speculation as to how these defense mechanisms evolved – and where – is likely to continue.


Prof. Abraham Minsky’s research is supported by Verband der Chemischen Industrie, Teva Pharmaceuticals, Israel, and the Helen & Milton A. Kimmelman Center for Biomolecular Structure & Assembly.

Prof. Minsky is the incumbent of the Professor T. Reichstein Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Jeffrey J. Sussman | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>