Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From sardines to anchovies and back in 50 years

10.01.2003


Local fisheries part of bigger cycle affecting entire Pacific Ocean



In the late 1930’s, California’s sardines supported the biggest fishery in the western hemisphere, with more than half a million tons of fish caught each year. By the mid-1950s, the sardines had virtually disappeared. Although fishing pressure may have played a part in this process, new research published in the current issue of Science indicates that the sardines’ demise was part of a 50-year cycle that affects not just California, but the entire Pacific Ocean.

Francisco Chavez, a biological oceanographer at the Monterey Bay Aquarium Research Institute (MBARI) and lead author of the study, combined a hundred years of data on physical oceanography, marine biology, and meteorology to examine long-term cycles in different parts of the Pacific Ocean. He points out that sardine catches in California, Japan and Peru followed parallel trends, despite being on opposite sides of the ocean and facing different amounts of fishing pressure. More importantly, when sardine catches in both areas went bust, anchovy catches boomed. Chavez’s research indicates that this alternation between a "sardine regime" and an "anchovy regime" involves much more than just fisheries. As he puts it, "Fish in many parts of the Pacific are marching to the same drummer. This same drummer is causing changes in ocean circulation and in the global carbon cycle. What we’ve been trying to find out is, what is the drummer, and is the beat going to change?"


To this end, Chavez gathered data from fellow scientists, not just on fisheries biology, but on sea-surface temperature, elevation, and currents, atmospheric carbon dioxide concentrations and circulation, global air temperature, and more. Despite considerable year-to-year variability, Chavez found parallel trends across the entire Pacific when he looked at three-year averages and subtracted out gradual long-term increases (such as that of carbon dioxide). These trends show that sardine and anchovy regimes alternate about every twenty five years, and that the most recent shift (from sardines to anchovies) occurred in the late 1990’s.

These cycles are similar to the familiar El Niño and La Niña events, but take place over longer time periods and have greater effects at mid- and high latitudes. For example, average conditions during a sardine regime are analogous to those during an El Niño event, when coastal waters off of Peru and California become warmer than usual. Less nutrient-rich deep water is brought the surface, so phytoplankton populations remain relatively low. This affects the entire marine food web, resulting in fewer zooplankton, anchovies, seabirds, and even salmon and rockfish. In contrast, the waters off Japan and the north-central Pacific respond oppositely, with increased productivity. Surprisingly, sardines tend to be more common on both sides of the north Pacific during these periods. During an anchovy regime, all of these trends are reversed.

Chavez hopes that by studying these long-term cycles, scientists will be able to better understand the effects of human activities. A prime example is the demise of the sardines. Chavez comments, "At least for these fast-growing fish, commercial fisheries are not always the sole cause of the collapse." Similarly, he points out that studies of global warming based on data collected over several decades could be strongly influenced by these natural, multi-decadal oscillations.

Chavez admits that his article may be controversial and hopes that it will stimulate scientific discussion about these long-term cycles, and especially about their possible causes. He remarks, "During the peer review process for this paper, one reviewer called it imaginative. And it is. If we had the ocean wired with a network of instruments and ocean observatories, then we would need less imagination and could understand this a lot better."

Debbie Meyer | EurekAlert!
Further information:
http://www.mbari.org/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>