Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food for Thought: Cells Dine on Their Own Brains to Stay Fit and Trim

10.01.2003


Eating your own brain may not sound like a sensible approach to prolonging your life, but researchers at the University of Rochester have discovered that some single-celled organisms essentially do just that to keep themselves healthy. The findings are published in this month’s issue of Molecular Biology of the Cell.



David Goldfarb, professor of biology at the University of Rochester, studied the yeast Saccharomyces cerevisiae and found that contrary to what biologists have believed, the cell would "eat" its own nucleus to rid itself of aged or damaged sections. Though it’s long been known that cells frequently break down and recycle various cell parts in a process called autophagy (after the Greek for "self-eating"), biologists thought that eating the nucleus was strictly off-limits. The nucleus, after all, is sort of the control center of the cell, and where the cell stores its most precious possessions such as its DNA. Eating it would be a bit like lunching on your own brain.

Goldfarb, however, found that the yeast can eat its nucleus by taking it apart piece by piece, removing non-essential bits and leaving behind the essential components such as the chromosomes.


"In human society, the business of collecting and recycling garbage isn’t a very glamorous enterprise, but in the less prestige-oriented world of cells, it’s invaluable," says Goldfarb. "We now know just how critical this process is, since a unique and elegant autophagic mechanism evolved to allow the piecemeal degradation of an otherwise essential organelle."

Autophagy is really a family of related processes that identify and deliver useful organic molecules, called macromolecules, to the cell’s lysozymes or vacuoles. Lysozymes and vacuoles are much like our own stomachs, filled with acid and hydrolytic enzymes capable of reducing macromolecules to their minimal parts. These parts are then shuttled where they are used either to stoke the metabolic fires or as building materials for new macromolecules. The only part of the cell thought to escape this fate is the nucleus, which is as essential to a cell as our brains are to us. Biologists had always thought that taking a bite out of the nucleus would effectively end a cell’s life.

Goldfarb found that when the yeast cell wants to recycle some of the macromolecules from its nucleus, it sends a vacuole to pinch off a teardrop-shaped portion of the nucleus and "digest" it. This unique process, called piecemeal microautophagy of the nucleus (PMN), occurs at Velcro-like junctions between the vacuole and the nuclear membranes. Nucleus-vacuole junctions were first described in 2000 by the Rochester group and remain the best-understood, inter-organellar junction apparatus in nature.

"It’s possible that PMN may not only recycle damaged or useless portions of the nucleus," says Goldfarb. "It’s possible that PMN increases the life span of yeast cells which, like humans, age and die."

Although it’s unknown if PMN is at work in human cells, there are a number of cases such as Bloom’s disease where pieces of human nuclei are pinched off into the cytoplasm. Scientists have no idea how or why this happens, but the new findings could provide an important foundation on which to build an understanding.

This research was funded by the National Science Foundation and the National Institutes of Health.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/goldfarb-autophagy.html

More articles from Life Sciences:

nachricht No gene is an island
25.07.2017 | Institute of Science and Technology Austria

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>