Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food for Thought: Cells Dine on Their Own Brains to Stay Fit and Trim

10.01.2003


Eating your own brain may not sound like a sensible approach to prolonging your life, but researchers at the University of Rochester have discovered that some single-celled organisms essentially do just that to keep themselves healthy. The findings are published in this month’s issue of Molecular Biology of the Cell.



David Goldfarb, professor of biology at the University of Rochester, studied the yeast Saccharomyces cerevisiae and found that contrary to what biologists have believed, the cell would "eat" its own nucleus to rid itself of aged or damaged sections. Though it’s long been known that cells frequently break down and recycle various cell parts in a process called autophagy (after the Greek for "self-eating"), biologists thought that eating the nucleus was strictly off-limits. The nucleus, after all, is sort of the control center of the cell, and where the cell stores its most precious possessions such as its DNA. Eating it would be a bit like lunching on your own brain.

Goldfarb, however, found that the yeast can eat its nucleus by taking it apart piece by piece, removing non-essential bits and leaving behind the essential components such as the chromosomes.


"In human society, the business of collecting and recycling garbage isn’t a very glamorous enterprise, but in the less prestige-oriented world of cells, it’s invaluable," says Goldfarb. "We now know just how critical this process is, since a unique and elegant autophagic mechanism evolved to allow the piecemeal degradation of an otherwise essential organelle."

Autophagy is really a family of related processes that identify and deliver useful organic molecules, called macromolecules, to the cell’s lysozymes or vacuoles. Lysozymes and vacuoles are much like our own stomachs, filled with acid and hydrolytic enzymes capable of reducing macromolecules to their minimal parts. These parts are then shuttled where they are used either to stoke the metabolic fires or as building materials for new macromolecules. The only part of the cell thought to escape this fate is the nucleus, which is as essential to a cell as our brains are to us. Biologists had always thought that taking a bite out of the nucleus would effectively end a cell’s life.

Goldfarb found that when the yeast cell wants to recycle some of the macromolecules from its nucleus, it sends a vacuole to pinch off a teardrop-shaped portion of the nucleus and "digest" it. This unique process, called piecemeal microautophagy of the nucleus (PMN), occurs at Velcro-like junctions between the vacuole and the nuclear membranes. Nucleus-vacuole junctions were first described in 2000 by the Rochester group and remain the best-understood, inter-organellar junction apparatus in nature.

"It’s possible that PMN may not only recycle damaged or useless portions of the nucleus," says Goldfarb. "It’s possible that PMN increases the life span of yeast cells which, like humans, age and die."

Although it’s unknown if PMN is at work in human cells, there are a number of cases such as Bloom’s disease where pieces of human nuclei are pinched off into the cytoplasm. Scientists have no idea how or why this happens, but the new findings could provide an important foundation on which to build an understanding.

This research was funded by the National Science Foundation and the National Institutes of Health.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/goldfarb-autophagy.html

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>