Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food for Thought: Cells Dine on Their Own Brains to Stay Fit and Trim

10.01.2003


Eating your own brain may not sound like a sensible approach to prolonging your life, but researchers at the University of Rochester have discovered that some single-celled organisms essentially do just that to keep themselves healthy. The findings are published in this month’s issue of Molecular Biology of the Cell.



David Goldfarb, professor of biology at the University of Rochester, studied the yeast Saccharomyces cerevisiae and found that contrary to what biologists have believed, the cell would "eat" its own nucleus to rid itself of aged or damaged sections. Though it’s long been known that cells frequently break down and recycle various cell parts in a process called autophagy (after the Greek for "self-eating"), biologists thought that eating the nucleus was strictly off-limits. The nucleus, after all, is sort of the control center of the cell, and where the cell stores its most precious possessions such as its DNA. Eating it would be a bit like lunching on your own brain.

Goldfarb, however, found that the yeast can eat its nucleus by taking it apart piece by piece, removing non-essential bits and leaving behind the essential components such as the chromosomes.


"In human society, the business of collecting and recycling garbage isn’t a very glamorous enterprise, but in the less prestige-oriented world of cells, it’s invaluable," says Goldfarb. "We now know just how critical this process is, since a unique and elegant autophagic mechanism evolved to allow the piecemeal degradation of an otherwise essential organelle."

Autophagy is really a family of related processes that identify and deliver useful organic molecules, called macromolecules, to the cell’s lysozymes or vacuoles. Lysozymes and vacuoles are much like our own stomachs, filled with acid and hydrolytic enzymes capable of reducing macromolecules to their minimal parts. These parts are then shuttled where they are used either to stoke the metabolic fires or as building materials for new macromolecules. The only part of the cell thought to escape this fate is the nucleus, which is as essential to a cell as our brains are to us. Biologists had always thought that taking a bite out of the nucleus would effectively end a cell’s life.

Goldfarb found that when the yeast cell wants to recycle some of the macromolecules from its nucleus, it sends a vacuole to pinch off a teardrop-shaped portion of the nucleus and "digest" it. This unique process, called piecemeal microautophagy of the nucleus (PMN), occurs at Velcro-like junctions between the vacuole and the nuclear membranes. Nucleus-vacuole junctions were first described in 2000 by the Rochester group and remain the best-understood, inter-organellar junction apparatus in nature.

"It’s possible that PMN may not only recycle damaged or useless portions of the nucleus," says Goldfarb. "It’s possible that PMN increases the life span of yeast cells which, like humans, age and die."

Although it’s unknown if PMN is at work in human cells, there are a number of cases such as Bloom’s disease where pieces of human nuclei are pinched off into the cytoplasm. Scientists have no idea how or why this happens, but the new findings could provide an important foundation on which to build an understanding.

This research was funded by the National Science Foundation and the National Institutes of Health.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/goldfarb-autophagy.html

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>